Technology

Vulnerable cubic CaSiO3 perovskite within the Earth’s mantle


  • Irifune, T. & Tsuchiya, T. Mineralogy of the Earth – section transitions and mineralogy of the decrease mantle. In Treatise on Geophysics. Quantity 2: Mineral Physics 1st edn (ed. Schubert, G.) 33–62 (Elsevier, 2007).

  • Hirose, Ok., Sinmyo, R. & Hernlund, J. Perovskite in Earth’s deep inner. Science 358, 734–738 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Miyagi, L. et al. Diamond anvil mobile deformation of CaSiO3 perovskite as much as 49 GPa. Phys. Earth Planet. Inter. 174, 159–164 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Shieh, S. R., Duffy, T. S. & Shen, G. Elasticity and energy of calcium silicate perovskite at decrease mantle pressures. Phys. Earth Planet. Inter. 143–144, 93–105 (2004).

    ADS 

    Google Scholar
     

  • Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering published by means of slab stagnation at ~1000-km intensity. Sci. Adv. 1, e1500815 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gréaux, S. et al. Sound pace of CaSiO3 perovskite suggests the presence of basaltic crust within the Earth’s decrease mantle. Nature 565, 218–221 (2019).

    ADS 

    Google Scholar
     

  • Thomson, A. R. et al. Calcium silicate perovskite’s acoustic velocities can provide an explanation for LLSVPs in Earth’s decrease mantle. Nature 572, 643–647 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Jones, T. D., Maguire, R. R., van Keken, P. E., Ritsema, J. & Koelemeijer, P. Subducted oceanic crust because the starting place of seismically gradual lower-mantle buildings. Prog. Earth Planet. Sci. 7, 17 (2020).

    ADS 

    Google Scholar
     

  • Garnero, E. J., McNamara, A. Ok. & Shim, S.-H. Continent-sized anomalous zones with low seismic pace on the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Tschauner, O. et al. Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the decrease mantle. Science 374, 891–894 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Nestola, F. et al. CaSiO3 perovskite in diamond signifies the recycling of oceanic crust into the decrease mantle. Nature 555, 237–241 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Komabayashi, T., Hirose, Ok., Sata, N., Ohishi, Y. & Dubrovinsky, L. S. Section transition in CaSiO3 perovskite. Earth Planet. Sci. Lett. 260, 564–569 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Solar, N. et al. Confirming a pyrolitic decrease mantle the usage of self-consistent strain scales and new constraints on CaSiO3 perovskite. J. Geophys. Res. Cast Earth 121, 4876–4894 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Ferré, D., Cordier, P. & Carrez, P. Dislocation modeling in calcium silicate perovskite in keeping with the Peierls–Nabarro type. Am. Mineral. 94, 135–142 (2009).

    ADS 

    Google Scholar
     

  • Ferré, D., Carrez, P. & Cordier, P. Peierls dislocation modelling in perovskite (CaTiO3): comparability with tausonite (SrTiO3) and MgSiO3 perovskite. Phys. Chem. Miner. 36, 233–239 (2009).

    ADS 

    Google Scholar
     

  • Immoor, J. et al. An advanced setup for radial diffraction experiments at excessive pressures and excessive temperatures in a resistive graphite-heated diamond anvil mobile. Rev. Sci. Instrum. 91, 045121 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Merkel, S. et al. Deformation of polycrystalline MgO at pressures of the decrease mantle. J. Geophys. Res. 107, 2271 (2002).

    ADS 

    Google Scholar
     

  • Immoor, J. et al. Proof for {100} 011 slip in ferropericlase in Earth’s decrease mantle from high-pressure/high-temperature experiments. Earth Planet. Sci. Lett. 489, 251–257 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Couper, S., Speziale, S., Marquardt, H., Liermann, H. P. & Miyagi, L. Does heterogeneous pressure act as a regulate on seismic anisotropy in Earth’s decrease mantle? Entrance. Earth Sci. 8, 540449 (2020).

    ADS 

    Google Scholar
     

  • Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S.-i Shear deformation of bridgmanite and magnesiowüstite aggregates at decrease mantle prerequisites. Science 351, 144–147 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Merkel, S. et al. Deformation of (Mg0.9Fe0.1)SiO3pPerovskite aggregates as much as 32 GPa. Earth Planet. Sci. Lett. 209, 351–360 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Marquardt, H. & Miyagi, L. Slab stagnation within the shallow decrease mantle related to an building up in mantle viscosity. Nat. Geosci. 8, 311–314 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Yamazaki, D. & Karato, S.-i Some mineral physics constraints at the rheology and geothermal construction of Earth’s decrease mantle. Am. Mineral. 86, 385–391 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Thielmann, M., Golabek, G. J. & Marquardt, H. Ferropericlase regulate of decrease mantle rheology: affect of section morphology. Geochem. Geophys. Geosys. 21, e2019GC008688 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Goryaeva, A. M., Carrez, P. & Cordier, P. Low viscosity and excessive attenuation in MgSiO3 post-perovskite inferred from atomic-scale calculations. Sci. Rep. 6, 34771 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muir, J. M. R. & Brodholt, J. P. Water distribution within the decrease mantle: implications for hydrolytic weakening. Earth Planet. Sci. Lett. 484, 363–369 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Kavner, A., Sinogeikin, S. V., Jeanloz, R. & Bass, J. D. Equation of state and energy of herbal majorite. J. Geophys. Res. Cast Earth 105, 5963–5971 (2000).


    Google Scholar
     

  • Saikia, A., Frost, D. J. & Rubie, D. C. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity within the mantle. Science 319, 1515–1518 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Takeda, Y.-T. Waft in rocks modelled as multiphase continua: software to polymineralic rocks. J. Struc. Geol. 20, 1569–1578 (1998).

    ADS 

    Google Scholar
     

  • Hunt, S. A. et al. An experimental investigation of the relative energy of the silica polymorphs quartz, coesite, and stishovite. Geochem. Geophys. Geosys. 20, 1975–1989 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • van Keken, P. E., Karato, S. & Yuen, D. A. Rheological regulate of oceanic crust separation within the transition zone. Geophys. Res. Lett. 23, 1821–1824 (1996).

    ADS 

    Google Scholar
     

  • Hirose, Ok., Fei, Y., Ma, Y. & Mao, H.-Ok. The destiny of subducted basaltic crust within the Earth’s decrease mantle. Nature 397, 53–56 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Hirose, Ok., Takafuji, N., Sata, N. & Ohishi, Y. Section transition and density of subducted MORB crust within the decrease mantle. Earth Planet. Sci. Lett. 237, 239–251 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Kurashina, T., Hirose, Ok., Ono, S., Sata, N. & Ohishi, Y. Section transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities within the decrease mantle. Phys. Earth Planet. Inter. 145, 67–74 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating via, and trapped beneath the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).

    ADS 

    Google Scholar
     

  • Liermann, H.-P. et al. Experimental way for in situ decision of subject matter textures at simultaneous excessive strain and excessive temperature by way of radial diffraction within the diamond anvil mobile. Rev. Sci. Instrum. 80, 104501 (2009).

    ADS 

    Google Scholar
     

  • Liermann, H.-P. et al. The Excessive Prerequisites Beamline P02.2 and the Excessive Prerequisites Science Infrastructure at PETRA III. J. Synchr. Rad. 22, 908–924 (2015).

    CAS 

    Google Scholar
     

  • Fei, Y. et al. Towards an internally constant strain scale. Proc. Natl Acad. Sci. 104, 9182–9186 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector device: from actual detector to idealised symbol or two-theta scan. Prime Press. Res. 14, 235–248 (1996).

    ADS 

    Google Scholar
     

  • Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A. S. & Richardson, J. W. Jr Blended texture and construction research of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594–600 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Singh, A. Ok., Balasingh, C., Mao, H.-Ok., Hemley, R. J. & Shu, J. Research of lattice traces measured below nonhydrostatic strain. J. Appl. Phys. 83, 7567–7575 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Matthies, S. & Vinel, G. W. At the copy of the orientation distribution serve as of texturized samples from diminished pole figures the usage of the conception of a conditional ghost correction. Phys. Standing Solidi B 112, K111–K114 (1982).

    ADS 

    Google Scholar
     

  • Wenk, H.-R., Matthies, S., Donovan, J. & Chateigner, D. BEARTEX: a Home windows-based program machine for quantitative texture research. J. Appl. Crystallogr. 31, 262–269 (1998).

    CAS 

    Google Scholar
     

  • Lebensohn, R. A. & Tomé, C. N. A self-consistent anisotropic means for the simulation of plastic deformation and texture building of polycrystals: software to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993).

    CAS 

    Google Scholar
     


  • #Vulnerable #cubic #CaSiO3 #perovskite #Earths #mantle

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *