Technology

Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for complex transistors


  • Theis, T. N. & Wong, H.-S. P. The top of Moore’s legislation: a brand new starting for info generation. Comput. Sci. Eng. 19, 41–50 (2017).


    Google Scholar
     

  • Schlom, D. G., Guha, S. & Datta, S. Gate oxides past SiO2. MRS Bull. 33, 1017–1025 (2008).

    CAS 

    Google Scholar
     

  • Ando, T. Final scaling of high-κ gate dielectrics: higher-κ or interfacial layer scavenging? Fabrics 5, 478–500 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salahuddin, S., Ni, Ok. & Datta, S. The generation of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).


    Google Scholar
     

  • Shulaker, M. M. et al. 3-dimensional integration of nanotechnologies for computing and knowledge garage on a unmarried chip. Nature 547, 74–78 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, H.-S. & Salahuddin, S. Reminiscence leads tips on how to higher computing. Nat. Nanotechnol. 10, 191–194 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Butler, S. Z. et al. Growth, demanding situations, and alternatives in two-dimensional fabrics past graphene. ACS Nano 7, 2898–2926 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Khan, A. I., Keshavarzi, A. & Datta, S. The way forward for ferroelectric field-effect transistor generation. Nat. Electron. 3, 588–597 (2020).


    Google Scholar
     

  • Dutta, S. et al. Monolithic 3-D integration of excessive staying power multi-bit ferroelectric FET for accelerating compute-in-memory. In 2020 IEEE World Electron Units Assembly (IEDM) 36.4.1–36.4.4 (IEEE, 2020).

  • Salahuddin, S. & Datta, S. Use of unfavourable capacitance to supply voltage amplification for low energy nanoscale gadgets. Nano Lett. 8, 405–410 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide skinny movies. Appl. Phys. Lett. 99, 102903 (2011).

    ADS 

    Google Scholar
     

  • Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin movies grown immediately on silicon. Nature 580, 478–482 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H.-J. et al. Scale-free ferroelectricity brought about via flat phonon bands in HfO2. Science 369, 1343–1347 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noheda, B. & Iniguez, J. A key piece of the ferroelectric hafnia puzzle. Science 369, 1300–1301 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, T. et al. Working out mobility mechanisms in extraordinarily scaled HfO2 (EOT 0.42 nm) the usage of faraway interfacial layer scavenging method and Vt-tuning dipoles with gatefirst procedure. In 2009 IEEE World Electron Units Assembly (IEDM) 17.1 (IEEE, 2009).

  • Wong, H. & Iwai, H. At the scaling of subnanometer EOT gate dielectrics for final nano CMOS generation. Microelectron. Eng. 138, 57–76 (2015).

    CAS 

    Google Scholar
     

  • Narasimha, S. et al. 22 nm high-performance SOI generation that includes dual-embedded stressors, Epi-Plate Prime-Ok deep-trench embedded DRAM and self-aligned by way of 15LM BEOL. In 2012 World Electron Units Assembly 3.3.1–3.3.4 (IEEE, 2012).

  • Huang, J. Gate first high-k/metallic gate stacks with 0 SiOx interface attaining EOT=0.59 nm for 16 nm utility. In 2009 Symposium on VLSI Era 34–35 (IEEE, 2009).

  • Yeo, Y.-C., King, T.-J. & Hu, C. Direct tunneling leakage present and scalability of other gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Kittel, C. Concept of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Materlik, R., Künneth, C. & Kersch, A. The starting place of ferroelectricity in Hf1−xZrxO2: a computational investigation and a floor calories style. J. Appl. Phys. 117, 134109 (2015).

    ADS 

    Google Scholar
     

  • Reyes-Lillo, S. E., Garrity, Ok. F. & Rabe, Ok. M. Antiferroelectricity in thin-film ZrO2 from first ideas. Phys. Rev. B 90, 140103 (2014).

    ADS 

    Google Scholar
     

  • Qi, Y. & Rabe, Ok. M. Segment festival in HfO2 with carried out electrical subject from first ideas. Phys. Rev. B 102, 214108 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Lomenzo, P. D., Richter, C., Mikolajick, T. & Schroeder, U. Depolarization as driver in antiferroelectric hafnia and ferroelectric wake-up. ACS Appl. Electron. Mater. 2, 1583–1595 (2020).

    CAS 

    Google Scholar
     

  • Hoffmann, M. et al. Unveiling the double-well calories panorama in a ferroelectric layer. Nature 565, 464–467 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric unfavourable capacitance. Nat. Rev. Mater. 4, 243–256 (2019).

    ADS 

    Google Scholar
     

  • Li, F., Zhang, S., Damjanovic, D., Chen, L.-Q. & Shrout, T. R. Native structural heterogeneity and electromechanical responses of ferroelectrics: studying from relaxor ferroelectrics. Adv. Funct. Mater. 28, 1801504 (2018).


    Google Scholar
     

  • Khan, A. et al. Experimental proof of ferroelectric unfavourable capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    ADS 

    Google Scholar
     

  • Yadav, A. Ok. et al. Spatially resolved steady-state unfavourable capacitance. Nature 565, 468–471 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. et al. Native unfavourable permittivity and topological segment transition in polar skyrmions. Nat. Mater. 20, 194–201 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, J. et al. Ferroelectricity in easy binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Lakes, R. S., Lee, T., Bersie, A. & Wang, Y. C. Excessive damping in composite fabrics with negative-stiffness inclusions. Nature 410, 565–567 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaglinski, T., Kochmann, D., Stone, D. & Lakes, R. S. Composite fabrics with viscoelastic stiffness more than diamond. Science 315, 620–622 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, Ok. et al. An identical oxide thickness (EOT) scaling with hafnium zirconium oxide high-κ dielectric close to morphotropic segment boundary. In 2019 IEEE World Electron Units Assembly (IEDM) 7.4.1–7.4.4 (IEEE, 2019).

  • Budimir, M., Damjanovic, D. & Setter, N. Piezoelectric reaction and free-energy instability within the perovskite crystals BaTiO3, PbTiO3 and Pb(Zr, Ti)O3. Phys. Rev. B 73, 174106 (2006).

    ADS 

    Google Scholar
     

  • Noheda, B. et al. A monoclinic ferroelectric segment within the Pb(Zr1−xTix)O3 forged answer. Appl. Phys. Lett. 74, 2059–2061 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Schroeder, U. et al. Fresh development for acquiring the ferroelectric segment in hafnium oxide founded movies: have an effect on of oxygen and zirconium. Jpn. J. Appl. Phys. 58, SL0801 (2019).

    CAS 

    Google Scholar
     

  • Schlom, D. G. & Haeni, J. H. A thermodynamic method to deciding on choice gate dielectrics. MRS Bull. 27, 198–204 (2002).

    CAS 

    Google Scholar
     

  • Bersuker, G. et al. The impact of interfacial layer houses at the functionality of Hf-based gate stack gadgets. J. Appl. Phys. 100, 094108 (2006).

    ADS 

    Google Scholar
     

  • Liao, Y.-H. et al. Electrical field-induced permittivity enhancement in negative-capacitance FET. IEEE Trans. Electron Units 68, 1346–1351 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Ragnarsson, L.-Å. et al. Ultrathin EOT high-κ/metallic gate gadgets for long run applied sciences: demanding situations, achievements and views. Microelectron. Eng. 88, 1317–1322 (2011).

    CAS 

    Google Scholar
     

  • Chatterjee, Ok., Rosner, A. J. & Salahuddin, S. Intrinsic pace restrict of unfavourable capacitance transistors. IEEE Electron Tool Lett. 38, 1328–1330 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Kwon, D. et al. Reaction pace of unfavourable capacitance FinFETs. In 2018 IEEE Symposium on VLSI Era 49–50 (IEEE, 2018).

  • Pae, S. et al. Reliability characterization of 32 nm high-Ok and metal-gate good judgment transistor generation. In 2010 IEEE World Reliability Physics Symposium 287–292 (IEEE, 2010).

  • Mukhopadhyay, S. et al. Lure technology in IL and HK layers all over BTI/TDDB tension in scaled HKMG N and P MOSFETs and implications on tinv-scaling. In 2014 IEEE World Reliability Physics Symposium GD.3.1–GD.3.11 (IEEE, 2014).

  • Gao, W. et al. Room-temperature unfavourable capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubko, P. et al. Unfavorable capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, J. C. & Salahuddin, S. Unfavorable capacitance transistors. Proc. IEEE 107, 49–62 (2019).

    CAS 

    Google Scholar
     

  • Hsain, H. A., Lee, Y., Parsons, G. & Jones, J. L. Compositional dependence of crystallization temperatures and segment evolution in hafnia-zirconia (HfxZr1−x)O2 skinny movies. Appl. Phys. Lett. 116, 192901 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Lin, B.-T., Lu, Y.-W., Shieh, J. & Chen, M.-J. Induction of ferroelectricity in nanoscale ZrO2 skinny movies on Pt electrode with out post-annealing. J. Eur. Ceram. Soc. 37, 1135–1139 (2017).

    CAS 

    Google Scholar
     

  • Björck, M. & Andersson, G. GenX: an extensible X-ray reflectivity refinement program using differential evolution. J. Appl. Crystallogr. 40, 1174–1178 (2007).


    Google Scholar
     

  • Ilavsky, J. Nika: tool for two-dimensional knowledge relief. J. Appl. Crystallogr. 45, 324–328 (2012).

    CAS 

    Google Scholar
     

  • Park, M. H., Shimizu, T., Funakubo, H. & Schroeder, U. in Ferroelectricity in Doped Hafnium Oxide: Fabrics, Homes and Units (eds Schroeder, U. et al.) 193–216 (Woodhead, 2019).

  • Mehmood, F., Mikolajick, T. & Schroeder, U. Lanthanum doping brought about structural adjustments and their implications on ferroelectric houses of Hf1−xZrxO2 skinny movie. Appl. Phys. Lett. 117, 092902 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Mukundan, V. et al. Quantifying non-centrosymmetric orthorhombic segment fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 movies. Appl. Phys. Lett. 117, 262905 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped skinny HfO2-based movies. Adv. Mater. 27, 1811–1831 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Lyu, J., Fina, I., Solanas, R., Fontcuberta, J. & Sánchez, F. Expansion window of ferroelectric epitaxial Hf0.5Zr0.5O2 skinny movies. ACS Appl. Electron. Mater. 1, 220–228 (2019).

    CAS 

    Google Scholar
     

  • Younger, A. T. et al. Variable linear polarization from an X-ray undulator. J. Synchrotron Radiat. 9, 270–274 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. The Fabrics Challenge: a fabrics genome method to accelerating fabrics innovation. APL Mater. 1, 011002 (2013).

    ADS 

    Google Scholar
     

  • Mathew, Ok. et al. Prime-throughput computational X-ray absorption spectroscopy. Sci. Information 5, 180151 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, D.-Y., Jung, H.-S. & Hwang, C. S. Structural houses and digital constitution of HfO2–ZrO2 composite movies. Phys. Rev. B 82, 094104 (2010).

    ADS 

    Google Scholar
     

  • Park, M. H. & Hwang, C. S. Fluorite-structure antiferroelectrics. Rep. Prog. Phys. 82, 124502 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Ok. & Hu, C. MOS capacitance measurements for high-leakage skinny dielectrics. IEEE Trans. Electron Units 46, 1500–1501 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Changhwan C. et al. Fabrication of TaN-gated ultra-thin MOSFETS (EOT <1.0 nm) with HfO2 the usage of a singular oxygen scavenging procedure for sub 65 nm utility. In 2005 Symposium on VLSI Era 226–227 (IEEE, 2005).

  • Takahashi, M. et al. Gate-first processed FUSI/HfO2/HfSiOx/Si MOSFETs with EOT=0.5 nm: interfacial layer formation via cycle-by-cycle deposition and annealing. In 2007 IEEE World Electron Units Assembly (IEDM) 523–526 (IEEE, 2007).

  • Mahapatra, S. (ed.) Basics of Bias Temperature Instability in MOS Transistors (Springer, 2016).

  • Kim, Y. J. et al. Time-dependent unfavourable capacitance results in Al2O3/BaTiO3 bilayers. Nano Lett. 16, 4375–4381 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, M. et al. Demonstration of high-speed hysteresis-free unfavourable capacitance in ferroelectric Hf0.5Zr0.5O2. In 2018 IEEE World Electron Units Assembly (IEDM) 31.6.1–31.6.4 (IEEE, 2018).

  • Kim, Ok. D. et al. Temporary unfavourable capacitance impact in atomic-layer-deposited Al2O3/Hf0.3Zr0.7O2 bilayer skinny movie. Adv. Funct. Mater. 29, 1808228 (2019).


    Google Scholar
     

  • Chen, L. Q. Segment-field means of segment transitions/area constructions in ferroelectric skinny movies: a assessment. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    CAS 

    Google Scholar
     

  • Lomenzo, P. D. et al. A Gibbs calories view of double hysteresis in ZrO2 and Si-doped HfO2. Appl. Phys. Lett. 117, 142904 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Synopsys Sentaurus Tool Consumer Information: Model O-2018.06 (Synopsys, 2018).

  • Park, J. Y. et al. A standpoint on semiconductor gadgets in response to fluorite-structured ferroelectrics from the fabrics–instrument integration standpoint. J. Appl. Phys. 128, 240904 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Hoffmann, M., Slesazeck, S., Schroeder, U. & Mikolajick, T. What’s subsequent for unfavourable capacitance electronics? Nat. Electron. 3, 504–506 (2020).


    Google Scholar
     

  • Hoffmann, M., Slesazeck, S. & Mikolajick, T. Growth and long run possibilities of unfavourable capacitance electronics: a fabrics standpoint. APL Mater. 9, 020902 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Mikolajick, T. et al. Subsequent technology ferroelectric fabrics for semiconductor procedure integration and their programs. J. Appl. Phys. 129, 100901 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Li, Y.-L. et al. Electric and reliability traits of FinFETs with high-okay gate stack and plasma remedies. IEEE Trans. Electron Units 68, 4–9 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Padmanabhan, R., Mohan, S., Morozumi, Y., Kaushal, S. & Bhat, N. Efficiency and reliability of TiO2/ZrO2/TiO2 (TZT) and AlO-doped TZT MIM capacitors. IEEE Trans. Electron Units 63, 3928–3935 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Shin, Y. et al. Crystallized HfLaO embedded tetragonal ZrO2 for dynamic random entry reminiscence capacitor dielectrics. Appl. Phys. Lett. 98, 173505 (2011).

    ADS 

    Google Scholar
     

  • Mise, N. et al. Scalability of TiN/HfAlO/TiN MIM DRAM capacitor to 0.7-nm-EOT and past. In 2009 IEEE World Electron Units Assembly (IEDM) 11.3.1–11.3.4 (IEEE, 2009).

  • Kil, D.-S. et al. Building of recent TiN/ZrO2/Al2O3/ZrO2/TiN capacitors extendable to 45nm technology DRAMs changing HfO2 founded dielectrics. In 2006 Symposium on VLSI Era 38–39 (IEEE, 2006).

  • Kim, S. Ok. & Popovici, M. Long term of dynamic random-access reminiscence as major reminiscence. MRS Bull. 43, 334–339 (2018).

    ADS 

    Google Scholar
     

  • Park, M. H. et al. A complete find out about at the mechanism of ferroelectric segment formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 6, 041403 (2019).

    ADS 

    Google Scholar
     

  • Weeks, S. L., Buddy, A., Narasimhan, V. Ok., Littau, Ok. A. & Chiang, T. Engineering of ferroelectric HfO2–ZrO2 nanolaminates. ACS Appl. Mater. Interfaces 9, 13440–13447 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Riedel, S., Polakowski, P. & Müller, J. A thermally tough and thickness impartial ferroelectric segment in laminated hafnium zirconium oxide. AIP Adv. 6, 095123 (2016).

    ADS 

    Google Scholar
     

  • Osada, M. & Sasaki, T. The upward thrust of 2D dielectrics/ferroelectrics. APL Mater. 7, 120902 (2019).

    ADS 

    Google Scholar
     

  • IRDS. Government abstract. In The World Roadmap for Units and Methods: 2020 (IEEE, 2020); http://irds.ieee.org.

  • Park, H. W., Roh, J., Lee, Y. B. & Hwang, C. S. Modeling of unfavourable capacitance in ferroelectric skinny Ffilms. Adv. Mater. 31, 1805266 (2019).


    Google Scholar
     

  • Park, M. H. et al. Morphotropic segment boundary of Hf1−xZrxO2 skinny movies for dynamic random entry recollections. ACS Appl. Mater. Interfaces 10, 42666–42673 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Das, D. & Jeon, S. Prime-κ HfxZr1−xO2 ferroelectric insulator by using excessive drive anneal. IEEE Trans. Electron Units 67, 2489–2494 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Approach to succeed in the morphotropic segment boundary in HfxZr1−xO2 via electrical subject biking for DRAM cellular capacitor programs. IEEE Electron Tool Lett. 42, 517–520 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Kashir, A. & Hwang, H. Ferroelectric and dielectric houses of Hf0.5Zr0.5O2 skinny movie close to morphotropic segment boundary. Phys. Standing Solidi A 218, 2000819 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Appleby, D. J. R. et al. Experimental remark of unfavourable capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     


  • #Ultrathin #ferroic #HfO2ZrO2 #superlattice #gate #stack #complex #transistors

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *