Technology

Superionic iron alloys and their seismic velocities in Earth’s internal core


  • 1.

    Birch, F. Elasticity and charter of the Earth’s internal. J. Geophys. Res. 57, 227–286 (1952).

    CAS 
    ADS 

    Google Scholar
     

  • 2.

    Poirier, J. P. & Shankland, T. J. Dislocation melting of iron and temperature of the internal core boundary, revisited. Geophys. J. Int. 115, 147–151 (1993).

    ADS 

    Google Scholar
     

  • 3.

    Li, J. & Fei, Y. in Treatise on Geochemistry, Vol. 2: The Mantle and Core (ed. Carlson, R. W.) 1–31 (Elsevier, 2007).

  • 4.

    Li, J., Fei, Y., Mao, H. Okay., Hirose, Okay. & Shieh, S. R. Sulfur within the Earth’s internal core. Earth Planet. Sci. Lett. 193, 509–514 (2001).

    CAS 
    ADS 

    Google Scholar
     

  • 5.

    Badro, J. et al. Impact of sunshine components at the sound pace of cast-iron: implications for the composition of Earth’s core. Earth Planet. Sci. Lett. 254, 233–238 (2007).

    CAS 
    ADS 

    Google Scholar
     

  • 6.

    Mao, Z. et al. Sound velocities of Fe and Fe–Si alloy within the Earth’s core. Proc. Natl Acad. Sci. USA 109, 10239–10244 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 7.

    Lin, J. F., Heinz, D. L., Campbell, A. J., Devine, J. M. & Shen, G. Y. Iron–silicon alloy in Earth’s core? Science 295, 313–315 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 8.

    Lin, J. F. et al. Sound velocities of iron–nickel and iron–silicon alloys at excessive pressures. Geophys. Res. Lett. 30, 2112 (2003).

    ADS 

    Google Scholar
     

  • 9.

    Antonangeli, D. et al. Composition of the Earth’s internal core from high-pressure sound pace measurements in Fe–Ni–Si alloys. Earth Planet. Sci. Lett. 295, 292–296 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 10.

    Chen, B. et al. Hidden carbon in Earth’s internal core printed via shear softening in dense Fe7C3. Proc. Natl Acad. Sci. USA 111, 17755–17758 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 11.

    Prescher, C. et al. Prime Poisson’s ratio of Earth’s internal core defined via carbon alloying. Nat. Geosci. 8, 220–223 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 12.

    Shibazaki, Y. et al. Sound pace measurements in dhcp-FeH as much as 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 313–314, 79–85 (2012).

    ADS 

    Google Scholar
     

  • 13.

    Caracas, R. The affect of hydrogen at the seismic homes of cast-iron. Geophys. Res. Lett. 42, 3780–3785 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 14.

    Alfè, D., Gillan, M. J. & Value, G. D. Composition and temperature of the Earth’s core constrained via combining ab initio calculations and seismic knowledge. Earth Planet. Sci. Lett. 195, 91–98 (2002).

    ADS 

    Google Scholar
     

  • 15.

    Terasaki, H. et al. Liquidus and solidus temperatures of a Fe–O–S alloy as much as the pressures of the outer core: implication for the thermal construction of the Earth’s core. Earth Planet. Sci. Lett. 304, 559–564 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • 16.

    Morard, G. et al. Fe–FeO and Fe–Fe3C melting members of the family at Earth’s core–mantle boundary prerequisites: implications for a volatile-rich or oxygen-rich core. Earth Planet. Sci. Lett. 473, 94–103 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 17.

    Mashino, I., Miozzi, F., Hirose, Okay., Morard, G. & Sinmyo, R. Melting experiments at the Fe–C binary gadget as much as 255 GPa: constraints at the carbon content material within the Earth’s core. Earth Planet. Sci. Lett. 515, 135–144 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 18.

    Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electric conductivity of iron at Earth’s core prerequisites. Nature 485, 355–358 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 19.

    de Koker, N., Steinle-Neumann, G. & Vlcek, V. Electric resistivity and thermal conductivity of liquid Fe alloys at excessive P and T, and warmth flux in Earth’s core. Proc. Natl Acad. Sci. USA 109, 4070–4073 (2012).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 20.

    Dziewonski, A. M. & Anderson, D. L. Initial reference Earth fashion. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS 

    Google Scholar
     

  • 21.

    Tkalčić, H. & Pham, T.-S. Shear homes of Earth’s internal core constrained via a detection of J waves in world correlation wavefield. Science 362, 329–332 (2018).

    PubMed 
    ADS 

    Google Scholar
     

  • 22.

    Martorell, B., Vočadlo, L., Brodholt, J. & Picket, I. G. Sturdy premelting impact within the elastic homes of hcp-Fe underneath inner-core prerequisites. Science 342, 466–468 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 23.

    Martorell, B., Picket, I. G., Brodholt, J. & Vočadlo, L. The elastic homes of hcp-Fe1−xSix at Earth’s inner-core prerequisites. Earth Planet. Sci. Lett. 451, 89–96 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 24.

    Li, Y., Vočadlo, L. & Brodholt, J. B. The elastic homes of hcp-Fe alloys underneath the prerequisites of the Earth’s internal core. Earth Planet. Sci. Lett. 493, 118–127 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 25.

    Singh, S. C., Taylor, M. A. J. & Montagner, J. P. At the presence of liquid in Earth’s internal core. Science 287, 2471–2474 (2000).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 26.

    Creager, Okay. C. Anisotropy of the internal core from differential shuttle instances of the stages PKP and PKIKP. Nature 356, 309–314 (1992).

    ADS 

    Google Scholar
     

  • 27.

    Vočadlo, L., Dobson, D. P. & Picket, I. G. Ab initio calculations of the pliancy of hcp-Fe as a serve as of temperature at inner-core stress. Earth Planet. Sci. Lett. 288, 534–538 (2009).

  • 28.

    Belonoshko, A. B., Skorodumova, N. V., Rosengren, A. & Johansson, B. Elastic anisotropy of Earth’s internal core. Science 319, 797–800 (2008).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 29.

    Tune, X. & Richards, P. Seismological proof for differential rotation of the Earth’s internal core. Nature 382, 221–224 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • 30.

    Su, W. J., Dziewonski, A. M. & Jeanloz, R. Planet inside of a planet: rotation of the internal core of Earth. Science 274, 1883–1887 (1996).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 31.

    Tkalčić, H., Younger, M., Bodin, T., Ngo, S. & Sambridge, M. The shuffling rotation of the Earth’s internal core printed via earthquake doublets. Nat. Geosci. 6, 497–502 (2013).

    ADS 

    Google Scholar
     

  • 32.

    Lodders, Okay. Sun Gadget abundances and condenstation temperatures of the weather. Astrophys. J. 591, 1220–1247 (2003).

    CAS 
    ADS 

    Google Scholar
     

  • 33.

    Li, Y., Vočadlo, L., Alfè, D. & Brodholt, J. B. Carbon partitioning between the Earth’s internal and outer core. J. Geophys. Res. Forged Earth 124, 12812–12824 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 34.

    Pamato, M. G. et al. Equation of state of hcp Fe–C–Si alloys and the impact of C incorporation mechanism at the density of hcp Fe alloys at 300 Okay. J. Geophys. Res. Forged Earth 125, e2020JB020159 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 35.

    Alfè, D. Temperature of the inner-core boundary of the Earth: melting of iron at excessive stress from first-principles coexistence simulations. Phys. Rev. B 79, 060101 (2009).

    ADS 

    Google Scholar
     

  • 36.

    Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth’s internal core boundary in response to speedy X-ray diffraction. Science 340, 464–466 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 37.

    Cavazzoni, C. et al. Superionic and steel states of water and ammonia at massive planet prerequisites. Science 283, 44–46 (1999).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 38.

    Goldman, N., Fried, L. E., Kuo, I.-F. W. & Mundy, C. J. Bonding within the superionic segment of water. Phys. Rev. Lett. 94, 217801 (2015).

    ADS 

    Google Scholar
     

  • 39.

    Hernandez, J.-A. & Caracas, R. Superionic–superionic segment transitions in body-centered cubic H2O ice. Phys. Rev. Lett. 117, 135503 (2016).

    PubMed 
    ADS 

    Google Scholar
     

  • 40.

    Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 41.

    Millot, M. et al. Experimental proof for superionic water ice the usage of surprise compression. Nat. Phys. 14, 297–302 (2018).

    CAS 

    Google Scholar
     

  • 42.

    Hou, M. et al. Superionic iron oxide–hydroxide in Earth’s deep mantle. Nat. Geosci. 14, 174–178 (2021).

    CAS 
    ADS 

    Google Scholar
     

  • 43.

    Hull, S., Farley, T. W. D., Hayes, W. & Hutchings, M. T. The elastic homes of lithium oxide and their variation with temperature. J. Nucl. Mater. 160, 125–134 (1988).

    CAS 
    ADS 

    Google Scholar
     

  • 44.

    Glatzmaier, G. A. & Roberts, P. H. Rotation and magnetism of Earth’s internal core. Science 274, 1887–1891 (1996).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 45.

    Tateno, S., Hirose, Okay., Ohishi, Y. & Tatsumi, Y. The construction of iron in Earth’s internal core. Science 330, 359–361 (2010).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 46.

    Belonoshko, A. B., Rajeev, A. & Johansson, B. Steadiness of the body-centred-cubic segment of iron within the Earth’s internal core. Nature 424, 1032–1034 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 47.

    Sakamaki, T. et al. Constraints on Earth’s internal core composition inferred from measurements of the sound pace of hcp-iron in excessive prerequisites. Sci. Adv. 2, e1500802 (2016).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 48.

    Antonangeli, D. et al. Sound velocities and density measurements of forged hcp-Fe and hcp-Fe–Si (9 wt.%) alloy at excessive stress: constraints at the Si abundance within the Earth’s internal core. Earth Planet. Sci. Lett. 482, 446–453 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 49.

    Caracas, R. The affect of carbon at the seismic homes of cast-iron. Geophys. Res. Lett. 44, 128–134 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 50.

    Tagawa, S., Ohta, Okay., Hirose, Okay., Kato, C. & Ohishi, Y. Compression of Fe–Si–H alloys to core pressures. Geophys. Res. Lett. 43, 3686–3692 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 51.

    Togo, A. & Tanaka, I. First rules phonon calculations in fabrics science. Scr. Mater. 108, 1–5 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 52.

    Klarbring, J. & Simak, S. I. Segment steadiness of dynamically disordered solids from first rules. Phys. Rev. Lett. 121, 225702 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 53.

    Terasaki, H. et al. Steadiness of Fe–Ni hydride after the response between Fe–Ni alloy and hydrous segment (δ-AlOOH) as much as 1.2 Mbar: chance of H contribution to the core density deficit. Phys. Earth Planet. Inter. 194–195, 18–24 (2012).

    ADS 

    Google Scholar
     

  • 54.

    Ozawa, H., Hirose, Okay., Tateno, S., Sata, N. & Ohishi, Y. Segment transition boundary between B1 and B8 constructions of FeO as much as 210 GPa. Phys. Earth Planet. Inter. 179, 157–163 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 55.

    Tateno, S., Kuwayama, Y., Hirose, Okay. & Ohishi, Y. The construction of Fe–Si alloy in Earth’s internal core. Earth Planet. Sci. Lett. 418, 11–19 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 56.

    Mori, Y. et al. Melting experiments on Fe–Fe3S gadget to 254 GPa. Earth Planet. Sci. Lett. 464, 135–141 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 57.

    Fischer, R. A. et al. Equation of state and segment diagram of Fe–16Si alloy as a candidate part of Earth’s core. Earth Planet. Sci. Lett. 357–358, 268–276 (2012).

    ADS 

    Google Scholar
     

  • 58.

    Blöchl, P. E. Projector augmented-wave way. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • 59.

    Kresse, G. Environment friendly iterative schemes for ab initio total-energy calculations the usage of a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • 60.

    Alfè, D. & Gillan, M. J. First-principles calculation of shipping coefficients. Phys. Rev. Lett. 81, 5161–5164 (1998).

    ADS 

    Google Scholar
     

  • 61.

    He, Y. et al. First-principles prediction of speedy migration channels of potassium ions in KAlSi3O8 hollandite: implications for top conductivity anomalies in subduction zones. Geophys. Res. Lett. 43, 6228–6233 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • 62.

    Mookherjee, M., Stixrude, L. & Karki, B. Hydrous silicate soften at excessive stress. Nature 452, 983–986 (2008).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 63.

    Belonoshko, A. B. et al. Stabilization of body-centred cubic iron underneath inner-core prerequisites. Nat. Geosci. 10, 312–316 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 64.

    Alfè, D., Cazorla, C. & Gillan, M. J. The kinetics of homogeneous melting past the restrict of superheating. J. Chem. Phys. 135, 024102 (2011).

    PubMed 
    ADS 

    Google Scholar
     

  • 65.

    Alfè, D., Gillan, M. J. & Value, G. D. Temperature and composition of the Earth’s core. Contemp. Phys. 48, 63–80 (2007).

    ADS 

    Google Scholar
     

  • 66.

    Alfè, D. First-principles simulations of direct coexistence of forged and liquid aluminum. Phys. Rev. B 68, 064423 (2003).

    ADS 

    Google Scholar
     

  • 67.

    Bonev, S. A., Schwegler, E., Ogitsu, T. & Galli, G. A quantum fluid of steel hydrogen instructed via first-principles calculations. Nature 431, 669–672 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 68.

    Ogitsu, T., Schwegler, E., Gygi, F. & Galli, G. Melting of lithium hydride underneath stress. Phys. Rev. Lett. 91, 175502 (2003).

    PubMed 
    ADS 

    Google Scholar
     

  • 69.

    Alfè, D. Melting curve of MgO from first-principles simulations. Phys. Rev. Lett. 94, 235701 (2005).

    PubMed 
    ADS 

    Google Scholar
     

  • 70.

    Yoo, C. S., Holmes, N. C., Ross, M., Webb, D. J. & Pike, C. Surprise temperatures and melting of iron at Earth core prerequisites. Phys. Rev. Lett. 70, 3931–3934 (1993).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 71.

    Alfè, D., Value, G. D. & Gillan, M. J. Iron underneath Earth’s core prerequisites: liquid-state thermodynamics and high-pressure melting curve from ab initio calculations. Phys. Rev. B 65, 165118 (2002).

    ADS 

    Google Scholar
     

  • 72.

    Sola, E. & Alfè, D. Melting of iron underneath Earth’s core prerequisites from diffusion Monte Carlo unfastened calories calculations. Phys. Rev. Lett. 103, 078501 (2009).

    PubMed 
    ADS 

    Google Scholar
     

  • 73.

    Haule, Okay., Yee, C.-H. & Kim, Okay. Dynamical mean-field principle throughout the full-potential strategies: digital construction of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).

    ADS 

    Google Scholar
     

  • 74.

    Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 78, 1396 (1997).

    CAS 
    ADS 

    Google Scholar
     

  • 75.

    Xu, J. et al. Thermal conductivity and electric resistivity of cast-iron at Earth’s core prerequisites from first rules. Phys. Rev. Lett. 121, 096601 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 76.

    Gomi, H. et al. The excessive conductivity of iron and thermal evolution of the Earth’s core. Phys. Earth Planet. Inter. 224, 88–103 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 77.

    Solar, S., He, Y., Kim, D. Y. & Li, H. Anomalous elastic homes of superionic ice. Phys. Rev. B 102, 104108 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 78.

    He, Y., Solar, S. & Li, H. Ab initio molecular dynamics investigation of the elastic homes of superionic Li2O underneath excessive temperature and stress. Phys. Rev. B 103, 174105 (2021).

    CAS 
    ADS 

    Google Scholar
     

  • 79.

    Nosé, S. A unified method of the consistent temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).

    CAS 
    ADS 

    Google Scholar
     


  • #Superionic #iron #alloys #seismic #velocities #Earths #core

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *