Technology

Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe2


  • 1.

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Idea of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 2.

    Scalapino, D. J. A not unusual thread: the pairing interplay for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO2 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Sato, M. & Ando, Y. Topological superconductors: a assessment. Rep. Prog. Phys. 80, 076501 (2017).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • 5.

    Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).

    ADS 

    Google Scholar
     

  • 6.

    Aoki, D., Ishida, Okay. & Flouquet, J. Evaluation of U-based ferromagnetic superconductors: comparability between UGe2, URhGe, and UCoGe. J. Phys. Soc. Jpn. 88, 022001 (2019).

    ADS 

    Google Scholar
     

  • 7.

    Ran, S. et al. Just about ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Aoki, D. et al. Unconventional superconductivity in heavy fermion UTe2. J. Phys. Soc. Jpn. 88, 043702 (2019).

    ADS 

    Google Scholar
     

  • 9.

    Ran, S. et al. Excessive magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Knebel, G. et al. Box-reentrant superconductivity on the subject of a metamagnetic transition within the heavy-fermion superconductor UTe2. J. Phys. Soc. Jpn. 88, 063707 (2019).

    ADS 

    Google Scholar
     

  • 11.

    Sundar, S. et al. Coexistence of ferromagnetic fluctuations and superconductivity within the actinide superconductor UTe2. Phys. Rev. B 100, 140502 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Jiao, L. et al. Chiral superconductivity in heavy-fermion steel UTe2. Nature 579, 523–527 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Nakamine, G. et al. Anisotropic reaction of spin susceptibility within the superconducting state of UTe2 probed with 125Te–NMR size. Phys. Rev. B 103, L100503 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Thomas, S. M. et al. Proof for a pressure-induced antiferromagnetic quantum vital level in intermediate-valence UTe2. Sci. Adv. 6, eabc8709 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Duan, C. et al. Incommensurate spin fluctuations within the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 125, 237003 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Rossat-Mignod, J. et al. Neutron scattering find out about of the YBa2Cu3O6+x gadget. Physica C 185–189, 86–92 (1991).

    ADS 

    Google Scholar
     

  • 18.

    Wilson, S. D. et al. Resonance within the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4−δ. Nature 442, 59–62 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 20.

    Sato, N. Okay. et al. Robust coupling between native moments and superconducting ‘heavy’ electrons in UPd2Al3. Nature 410, 340–343 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Bernhoeft, N. Superconductor order parameter symmetry in UPd2Al3. Eur. Phys. J. B 13, 685–694 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Inventory, C., Broholm, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance within the d-wave superconductor CeCoIn5. Phys. Rev. Lett. 100, 087001 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Stockert, O. et al. Magnetically pushed superconductivity in CeCu2Si2. Nat. Phys. 7, 119–124 (2011).

    CAS 

    Google Scholar
     

  • 24.

    Kuwabara, T. & Ogata, M. Spin-triplet superconductivity because of antiferromagnetic spin-fluctuation in Sr2RuO4. Phys. Rev. Lett. 85, 4586–4589 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Eschrig, M. The impact of collective spin-1 excitations on digital spectra in high-Tc superconductors. Adv. Phys. 55, 47–183 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A common dating between magnetic resonance and superconducting hole in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).

    CAS 

    Google Scholar
     

  • 27.

    Huxley, A. D., Raymond, S. & Ressouche, E. Magnetic excitations within the ferromagentic superconductor UGe2. Phys. Rev. Lett. 91, 207201 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Inventory, C. et al. Anisotropic vital magnetic fluctuations within the ferromagnetic superconductor UCoGe. Phys. Rev. Lett. 107, 187202 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Kunkemöller, S. et al. Absence of a big superconductivity-induced hole in magnetic fluctuations of Sr2RuO4. Phys. Rev. Lett. 118, 147002 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Steffens, P. et al. Spin fluctuations in Sr2RuO4 from polarized neutron scattering: implications for superconductivity. Phys. Rev. Lett. 122, 047004 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Pustogow, A. et al. Constraints at the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Joynt, R. & Taillefer, L. The superconducting stages of UPt3. Rev. Mod. Phys. 74, 235–294 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Aeppli, G. et al. Magnetic order and fluctuations in superconducting UPt3. Phys. Rev. Lett. 60, 615–618 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Gannon, W. J. et al. Spin susceptibility of the topological superconductor UPt3 from polarized neutron diffraction. Phys. Rev. B 96, 041111(R) (2017).

    ADS 

    Google Scholar
     

  • 35.

    Track, Y. et al. Nature of the spin resonance mode in CeCoIn5. Commun. Phys. 3, 98 (2020).

    CAS 

    Google Scholar
     

  • 36.

    Zwicknagl, G. & Fulde, P. The twin nature of fivef electrons and the starting place of heavy fermions in U compounds. J. Phys. Condens. Subject 15, S1911–S1916 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Fujimori, S. et al. Core-level photoelectron spectroscopy find out about of UTe2. J. Phys. Soc. Jpn. 90, 015002 (2021).

    ADS 

    Google Scholar
     

  • 38.

    Ishizuka, J. & Yanase, Y. Periodic Anderson type for magnetism and superconductivity in UTe2. Phys. Rev. B 103, 094504 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Wang, M. et al. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 40.

    Miao, L. et al. Low power band construction and symmetries of UTe2 from angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 124, 076401 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Kim, J. S., Tam, G. N. & Stewart, G. R. Common scaling regulation for the condensation power throughout a extensive vary of superconductor categories. Phys. Rev. B 92, 224509 (2015).

    ADS 

    Google Scholar
     

  • 42.

    Ehlers, G., Podlesnyak, A. A., Niedziela, J. L., Iverson, E. B. & Sokol, P. E. The brand new Chilly Neutron Chopper Spectrometer on the Spallation Neutron Supply: design and function, Rev. Sci. Instrum. 82, 085108 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Ewings, R. A. et al. Horace: device for the research of information from unmarried crystal spectroscopy experiments at time-of-flight neutron tools. Nucl. Instrum. Meth. Phys. Res. A 834, 132–142 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Nica, E. N. & Si, Q. Multiorbital singlet pairing and d + d superconductivity. npj Quantum Mater. 6, 3 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Nica, E. M., Yu, R. & Si, Q. Orbital-selective pairing and superconductivity in iron selenides. npj Quantum Mater. 2, 24 (2017).

    ADS 

    Google Scholar
     

  • 46.

    Pang, G. M. et al. Totally gapped d-wave superconductivity in CeCu2Si2. Proc. Natl Acad. Sci. USA 115, 5343–5347 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Amorese, A. et al. Imaginable multiorbital flooring state in CeCu2Si2. Phys. Rev. B 102, 245146 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Shick, A. B. & Pickett, W. E. Spin–orbit coupling prompted degeneracy within the anisotropic unconventional superconductor UTe2. Phys. Rev. B 100, 134502 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Shick, A. B., Fujimori, S. & Pickett, W. E. UTe2: a just about insulating half-filled (j=frac{5}{2}5{f}^{3}) heavy-fermion steel. Phys. Rev. B 103, 125136 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Koster, G. F. et al. The Homes of the Thirty-Two Level Teams (MIT Press, 1963).

  • 51.

    Pixley, J. H., Deng, L., Ingersent, Okay. & Si, Q. Pairing correlations close to a Kondo-destruction quantum vital level. Phys. Rev. B 91, 201109(R) (2015).

    ADS 

    Google Scholar
     

  • 52.

    Nguyen, D. H. et al. Superconductivity in an excessive unusual steel. Nat. Commun. 12, 4341 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • #Resonance #antiferromagnetic #spin #fluctuations #superconductivity #UTe2

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *