Technology

Polarized phonons elevate angular momentum in ultrafast demagnetization


  • 1.

    Beaurepaire, E., Merle, J. C., Daunois, A. & Bigot, J. Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Koopmans, B. et al. Explaining the paradoxical range of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Wietstruk, M. et al. Scorching-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets seen via femtosecond x-ray magnetic round dichroism. Phys. Rev. Lett. 106, 127401 (2011).

    ADS 

    Google Scholar
     

  • 4.

    Graves, C. E. et al. Nanoscale spin reversal via non-local angular momentum switch following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293–298 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    von Korff Schmising, C. et al. Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203 (2014).

    ADS 

    Google Scholar
     

  • 6.

    Frietsch, B. et al. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium steel. Nat. Commun. 6, 8262 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Frietsch, B. et al. The position of ultrafast magnon era within the magnetization dynamics of rare-earth metals. Sci. Adv. 6, eabb1601 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized mild. Phys. Rev. Lett. 99, 047601 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Radu, I. et al. Temporary ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Ostler, T. A. et al. Ultrafast heating as a enough stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Wienholdt, S., Hinzke, D., Carva, Ok., Oppeneer, P. M. & Nowak, U. Orbital-resolved spin fashion for thermal magnetization switching in rare-earth-based ferrimagnets. Phys. Rev. B 88, 020406(R) (2013).

    ADS 

    Google Scholar
     

  • 12.

    Siegrist, F. et al. Gentle-wave dynamic keep an eye on of magnetism. Nature 571, 240–244 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Malinowski, G. et al. Keep an eye on of velocity and potency of ultrafast demagnetization via direct switch of spin angular momentum. Nat. Phys. 4, 855–858 (2008).

    CAS 

    Google Scholar
     

  • 14.

    Battiato, M., Carva, Ok. & Oppeneer, P. M. Superdiffusive spin delivery as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Melnikov, A. et al. Ultrafast delivery of laser-excited spin-polarized carriers Au/Fe/MgO(001). Phys. Rev. Lett. 107, 076601 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Rudolf, D. et al. Ultrafast magnetization enhancement in steel multilayers pushed via superdiffusive spin present. Nat. Commun. 3, 1037 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Eschenlohr, A. et al. Ultrafast spin delivery as key to femtosecond demagnetization. Nat. Mater. 12, 332–336 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & De Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Carva, Ok., Battiato, M. & Oppeneer, P. M. Ab initio investigation of the Elliott-Yafet electron-phonon mechanism in laser-induced ultrafast demagnetization. Phys. Rev. Lett. 107, 207201 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Los angeles-O-Vorakiat, C. et al. Ultrafast demagnetization measurements the use of excessive ultraviolet mild: Comparability of digital and magnetic contributions. Phys. Rev. 2, 011005 (2012).


    Google Scholar
     

  • 21.

    Hinzke, D. et al. Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys. Phys. Rev. B 92, 054412 (2015).

    ADS 

    Google Scholar
     

  • 22.

    Dornes, C. et al. The ultrafast Einstein-de Haas impact. Nature 565, 209–212 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Roth, T. et al. Temperature dependence of laser-induced demagnetization in Ni: a key for figuring out the underlying mechanism. Phys. Rev. 2, 021006 (2012).


    Google Scholar
     

  • 24.

    Schellekens, A. J., Verhoeven, W., Vader, T. N., Koopmans, B. Investigating the contribution of superdiffusive delivery to ultrafast demagnetization of ferromagnetic skinny movies. Appl. Phys. Lett. 102, 252408 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Stamm, C. et al. Femtosecond amendment of electron localization and switch of angular momentum in nickel. Nat. Mater. 6, 740–743 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Maldonado, P. et al. Monitoring the ultrafast nonequilibrium power glide between digital and lattice levels of freedom in crystalline nickel. Phys. Rev. B 101, 100302 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Chen, Z. & Wang, L.-W. Function of preliminary magnetic dysfunction: a time-dependent ab initio learn about of ultrafast demagnetization mechanisms. Sci. Adv. 5, eaau8000 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Kealhofer, C. et al. All-optical keep an eye on and metrology of electron pulses. Science 352, 429–433 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 29.

    Wang, X. et al. Temperature dependence of electron-phonon thermalization and its correlation to ultrafast magnetism. Phys. Rev. B 81, 220301 (2010).

    ADS 

    Google Scholar
     

  • 30.

    Zhang, L. F. & Niu, Q. Angular momentum of phonons and the Einstein-de Haas impact. Phys. Rev. Lett. 112, 085503 (2014).

    ADS 

    Google Scholar
     

  • 31.

    Garanin, D. A. & Chudnovsky, E. M. Angular momentum in spin-phonon processes. Phys. Rev. B 92, 024421 (2015).

    ADS 

    Google Scholar
     

  • 32.

    Zhu, H. et al. Statement of chiral phonons. Science 359, 579–582 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 33.

    Birgeneau, R. J., Cordes, J., Dolling, G. & Woods, A. D. B. Commonplace modes of vibration in nickel. Phys. Rev. A 136, 1359–1365 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Zahn, D. et al. Lattice dynamics and ultrafast power glide between electrons, spins, and phonons in a three-D ferromagnet. Phys. Rev. Res. 3, 023032 (2021).

    CAS 

    Google Scholar
     

  • 35.

    Tengdin, P. et al. Essential habits inside 20 fs drives the out-of-equilibrium laser-induced magnetic section transition in nickel. Sci. Adv. https://doi.org/10.1126/science.aaw9486 (2018).

  • 36.

    Hofherr, M. et al. Brought on as opposed to intrinsic magnetic moments in ultrafast magnetization dynamics. Phys. Rev. B 98, 174419 (2018).

    ADS 

    Google Scholar
     

  • 37.

    Fechner, M. et al. Magnetophononics: ultrafast spin keep an eye on during the lattice. Phys. Rev. Mater. 2, 064401 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Disa, A. S. et al. Polarizing an antiferromagnet via optical engineering of the crystal box. Nat. Phys. 16, 937–941 (2020).

    CAS 

    Google Scholar
     

  • 39.

    Gao, M. N., Zhang, W. & Zhang, L. F. Nondegenerate chiral phonons in graphene/hexagonal boron nitride heterostructure from first-principles calculations. Nano Lett. 18, 4424–4430 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Grissonnanche, G. et al. Chiral phonons within the pseudogap section of cuprates. Nat. Phys. 16, 1108–1111 (2020).

    CAS 

    Google Scholar
     

  • 41.

    Hirashita, N., Kinoshita, M., Aikawa, I. & Ajioka, T. Results of floor hydrogen at the air oxidation at room temperature of HF handled Si (100) surfaces. Appl. Phys. Lett. 56, 451–453 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Mazzara, C. et al. Hydrogen-terminated Si(111) and Si(100) via rainy chemical remedy: linear and non-linear infrared spectroscopy. Surf. Sci. 427–428, 208–213 (1999).

    ADS 

    Google Scholar
     

  • 43.

    Ji, J.-Y., Shen, T.-C. Low-temperature silicon epitaxy on hydrogen-terminated Si(001) surfaces. Phys. Rev. B 70, 115309 (2004).

    ADS 

    Google Scholar
     

  • 44.

    Kreuzpaintner, W., Störmer, M., Lott, D., Solina, D. & Schreyer, A. Epitaxial expansion of nickel on Si(100) via dc magnetron sputtering. J. Appl. Phys. 104, 114302 (2008).

    ADS 

    Google Scholar
     

  • 45.

    Kreuzpaintner, W., Störmer, M., Lott, D., Solina, D. & Schreyer, A. Epitaxial expansion of nickel on Si(100) via dc magnetron sputtering. J. Appl. Phys. 104, 114302 (2008).

    ADS 

    Google Scholar
     

  • 46.

    Schmehl, A. et al. Design and realization of a sputter deposition machine for the in situ- and in operando-use in polarized neutron reflectometry experiments. Nucl. Instrum. Strategies Phys. Res. A 883, 170–182 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Jiang, H., Klemmer, T. J., Barnard, J. A. & Payzant, E. A. Epitaxial expansion of Cu on Si via magnetron sputtering. J. Vac. Sci. Technol. A 16, 3376–3383 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Chang, C.-A. Reversed magnetic anisotropy in deformed (100) Cu/Ni/Cu buildings. J. Appl. Phys. 68, 4873–4875 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Chang, C.-A. Reversal in magnetic anisotropy of (100)Cu-Ni superlattices. J. Magn. Magn. Mater. 97, 102–106 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Ye, J. et al. Design and realization of a sputter deposition machine for the in situ and in operando use in polarized neutron reflectometry experiments: novel features. Nucl. Instrum. Strategies Phys. Res. A 964, 163710 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Hull, C. M., Switzer, J. A. Electrodeposited epitaxial cu(100) on si(100) and lift-off of unmarried crystal-like Cu(100) foils. ACS Appl. Mater. Interfaces 10, 38596–38602 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Warren, B. E. X-Ray Diffraction (Dover, 1990).

  • 53.

    Björck, M. & Andersson, G. GenX: an extensible X-ray reflectivity refinement program using differential evolution. J. Appl. Crystallogr. 40, 1174–1178 (2007).


    Google Scholar
     

  • 54.

    Cemin, F. et al. Epitaxial expansion of Cu(001) skinny movies onto Si(001) the use of a single-step HiPIMS procedure. Sci. Rep. 7, 1655 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Chen, L., Andrea, L., Timalsina, Y. P., Wang, G.-C. & Lu, T.-M. Engineering epitaxial-nanospiral steel movies the use of dynamic indirect attitude deposition. Cryst. Expansion Des. 13, 2075–2080 (2013).

    CAS 

    Google Scholar
     

  • 56.

    Seidel, M. et al. Environment friendly high-power ultrashort pulse compression in self-defocusing bulk media. Sci. Rep. 7, 1410 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Srinivasan, R., Lobastov, V. A., Ruan, C.-Y. & Zewail, A. H. Ultrafast electron diffraction (UED). Helv. Chim. Acta 86, 1761–1799 (2003).


    Google Scholar
     

  • 58.

    Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and x-rays: shooting chemistry in motion. Science 343, 1108–1116 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Kasmi, L., Kreier, D., Bradler, M., Riedle, E. & Baum, P. Femtosecond single-electron pulses generated via two-photon photoemission just about the paintings serve as. New J. Phys. 17, 033008 (2015).

    ADS 

    Google Scholar
     

  • 60.

    Ehberger, D. et al. Terahertz compression of electron pulses at a planar reflect membrane. Phys. Rev. Appl. 11, 024034 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Simerska, M. The temperature dependence of the function Debye temperature of nickel. Czech. J. Phys. B 12, 858–859 (1962).

    ADS 

    Google Scholar
     

  • 62.

    Plimpton, S. Speedy parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 63.

    Foiles, S. M., Baskes, M. I. & Daw, M. S. Embedded-atom-method purposes for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Sandia Nationwide Laboratories LAMMPS (Huge-scale Atomic/Molecular Vastly Parallel Simulator) https://lammps.sandia.gov/doc/Intro.html (2019).

  • 65.

    Coleman, S. P., Spearot, D. E. & Capolungo, L. Digital diffraction research of Ni [010] symmetric tilt grain limitations. Style. Simul. Mater. Sci. Eng. 21, 055020 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Danan, H., Herr, A. & Meyer, A. J. New determinations of the saturation magnetization of nickel and iron. J. Appl. Phys. 39, 669–670 (1968).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Scott, G. G. The gyromagnetic ratios of the ferromagnetic components. Phys. Rev. 87, 697–699 (1952).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    You, W. et al. Revealing the character of the ultrafast magnetic section transition in Ni via correlating excessive ultraviolet magneto-optic and photoemission spectroscopies. Phys. Rev. Lett. 121, 077204 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Volkov, M. et al. Attosecond screening dynamics mediated via electron localization in transition metals. Nat. Phys. 15, 1145–1149 (2019).

    CAS 

    Google Scholar
     

  • 70.

    Lee, E. W. Magnetostriction and magnetomechanical results. Rep. Prog. Phys. 18, 184–229 (1955).

    ADS 

    Google Scholar
     

  • 71.

    Guo, G. Y. Orientation dependence of the magnetoelastic coupling constants in strained FCC Co and Ni: an ab initio learn about. J. Magn. Magn. Mater. 209, 33–36 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Grossinger, R., Turtelli, R. S. & Mehmood, N. Fabrics with excessive magnetostriction. In thirteenth World Symposium on Complex Fabrics (ISAM 2013) 60, 012002 (2014).

  • 73.

    Pateras, A. et al. Room temperature massive magnetostriction in single-crystal nickel nanowires. NPG Asia Mater. 11, 59 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Farle, M., Mirwald-Schulz, B., Anisimov, A. N., Platow, W. & Baberschke, Ok. Upper-order magnetic anisotropies and the character of the spin-reorientation transition in face-centered-tetragonal Ni(001)/Cu(001). Phys. Rev. B 55, 3708–3715 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 75.

    Kittel, C. At the gyromagnetic ratio and spectroscopic splitting issue of ferromagnetic elements. Phys. Rev. 76, 743–748 (1949).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 76.

    Van Vleck, J. H. In regards to the principle of ferromagnetic resonance absorption. Phys. Rev. 78, 266–274 (1950).

    ADS 
    MATH 

    Google Scholar
     

  • 77.

    Scott, G. G. Assessment of gyromagnetic ratio experiments. Rev. Mod. Phys. 34, 102–109 (1962).

    ADS 

    Google Scholar
     


  • #Polarized #phonons #elevate #angular #momentum #ultrafast #demagnetization

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *