Technology

Person human cortical progenitors can produce excitatory and inhibitory neurons


  • 1.

    Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 2.

    Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Lack of Nkx2.1 homeobox gene serve as ends up in a ventral to dorsal molecular respecification inside the basal telencephalon: proof for a change of the pallidum into the striatum. Construction 126, 3359–3370 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Gorski, J. A. et al. Cortical excitatory neurons and glia, however no longer GABAergic neurons, are produced within the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Xu, Q., Tam, M. & Anderson, S. A. Destiny mapping Nkx2.1-lineage cells within the mouse telencephalon. J. Comp. Neurol. 506, 16–29 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Anderson, S. A., Marín, O., Horn, C., Jennings, Okay. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Construction 128, 353–363 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Petanjek, Z., Berger, B. & Esclapez, M. Origins of cortical GABAergic neurons within the cynomolgus monkey. Cereb. Cortex 19, 249–262 (2009).

    PubMed 

    Google Scholar
     

  • 7.

    Letinic, Okay., Zoncu, R. & Rakic, P. Foundation of GABAergic neurons within the human neocortex. Nature 417, 645–649 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 8.

    Hansen, D. V. et al. Non-epithelial stem cells and cortical interneuron manufacturing within the human ganglionic eminences. Nat. Neurosci. 16, 1576–1587 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Alzu’bi, A. et al. Distinct cortical and sub-cortical neurogenic domain names for GABAergic interneuron precursor transcription elements NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon. Mind Struct. Funct. 222, 2309–2328 (2017).

    PubMed 

    Google Scholar
     

  • 10.

    Alzu’bi, A. et al. The transcription elements COUP-TFI and COUP-TFII have distinct roles in arealisation and GABAergic interneuron specification within the early human fetal telencephalon. Cereb. Cortex 27, 4971–4987 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Kohwi, M. et al. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J. Neurosci. 27, 6878–6891 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Younger, Okay. M., Fogarty, M., Kessaris, N. & Richardson, W. D. Subventricular zone stem cells are heterogeneous with recognize to their embryonic origins and neurogenic fates within the grownup olfactory bulb. J. Neurosci. 27, 8286–8296 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Fuentealba, L. C. et al. Embryonic beginning of postnatal neural stem cells. Cellular 161, 1644–1655 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories expose developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 15.

    Pollen, A. A. et al. Molecular identification of human outer radial glia all the way through cortical building. Cellular 163, 55–67 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Bystron, I., Blakemore, C. & Rakic, P. Construction of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 9, 110–122 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Bandler, R. C., Mayer, C. & Fishell, G. Cortical interneuron specification: the juncture of genes, time and geometry. Curr. Opin. Neurobiol. 42, 17–24 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 19.

    Li, J. et al. Transcription elements Sp8 and Sp9 coordinately keep watch over olfactory bulb interneuron building. Cereb. Cortex 28, 3278–3294 (2018).

    PubMed 

    Google Scholar
     

  • 20.

    Guo, T. et al. Dlx1/2 are central and crucial parts within the transcriptional code for producing olfactory bulb interneurons. Cereb. Cortex 29, 4831–4849 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Batista-Brito, R. et al. The cell-intrinsic requirement of Sox6 for cortical interneuron building. Neuron 63, 466–481 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Stumm, R. Okay. et al. CXCR4 regulates interneuron migration within the creating neocortex. J. Neurosci. 23, 5123–5130 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    López-Bendito, G. et al. Chemokine signaling controls intracortical migration and ultimate distribution of GABAergic interneurons. J. Neurosci. 28, 1613–1624 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Tripodi, M., Filosa, A., Armentano, M. & Studer, M. The COUP-TF nuclear receptors keep watch over mobile migration within the mammalian basal forebrain. Construction 131, 6119–6129 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Azim, E., Jabaudon, D., Repute, R. M. & Macklis, J. D. SOX6 controls dorsal progenitor identification and interneuron range all the way through neocortical building. Nat. Neurosci. 12, 1238–1247 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Lein, E. S. et al. Genome-wide atlas of gene expression within the grownup mouse mind. Nature 445, 168–176 (2007).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 27.

    Herrera, D. G., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Grownup-derived neural precursors transplanted into a couple of areas within the grownup mind. Ann. Neurol. 46, 867–877 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Qiu, X. et al. Reversed graph embedding resolves advanced single-cell trajectories. Nat. Strategies 14, 979–982 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 30.

    Lodato, M. A. et al. Somatic mutation in unmarried human neurons tracks developmental and transcriptional historical past. Science 350, 94–98 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 31.

    Ludwig, L. S. et al. Lineage tracing in people enabled by means of mitochondrial mutations and single-cell genomics. Cellular 176, 1325–1339.e22 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Lareau, C. A. et al. Vastly parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39, 451–461 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Paredes, M. F. et al. Intensive migration of younger neurons into the newborn human frontal lobe. Science 354, aaf7073 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bandler, R. C. et al. Unmarried-cell delineation of lineage and genetic identification within the mouse mind. Nature https://doi.org/10.1038/s41586-021-04237-0 (2021).

  • 35.

    Rakic, P. Evolution of the neocortex: a standpoint from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Zhang, Y. et al. Cortical neural stem mobile lineage development is regulated by means of extrinsic signaling molecule Sonic hedgehog. Cellular Rep. 30, 4490–4504.e4 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Cai, Y., Zhang, Y., Shen, Q., Rubenstein, J. L. & Yang, Z. A subpopulation of particular person neural progenitors within the mammalian dorsal pallium generates each projection neurons and interneurons in vitro. Stem Cells 31, 1193–1201 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Daley, T. & Smith, A. D. Modeling genome protection in single-cell sequencing. Bioinformatics 30, 3159–3165 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Onorati, M. et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial blia. Cellular Rep. 16, 2576–2592 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Schildge, S., Bohrer, C., Beck, Okay. & Schachtrup, C. Isolation and tradition of mouse cortical astrocytes. J. Vis. Exp. 71, 50079 (2013).


    Google Scholar
     

  • 41.

    Crouch, E. E. & Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse mind microregions. Nat. Protocols 13, 738–751 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Bhaduri, A. et al. Outer radial blia-like most cancers stem cells give a contribution to heterogeneity of glioblastoma. Cellular Stem Cellular 26, 48–63.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Stuart, T. et al. Complete integration of single-cell knowledge. Cellular 177, 1888–1902.e1821 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Fleming, S. J., Marioni, J. C. & Babadi, M. CellBender remove-background: a deep generative style for unsupervised removing of background noise from scRNA-seq datasets. bioRxiv https://doi.org/10.1101/791699 (2019).

  • 45.

    Bernstein, N. J. et al. Solo: doublet identity in single-cell RNA-seq by means of semi-supervised deep studying. Cellular Syst. 11, 95–101.e5 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Cao, J. et al. The one-cell transcriptional panorama of mammalian organogenesis. Nature 566, 496–502 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 47.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of brief DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing mistakes in distinctive molecular identifiers to toughen quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Speir, M. L. et al. UCSC mobile browser: visualize your single-cell knowledge. Bioinformatics https://doi.org/10.1093/bioinformatics/btab503 (2021).


  • #Person #human #cortical #progenitors #produce #excitatory #inhibitory #neurons

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *