Technology

Of a bathroom/WO big name exploding inside an increasing carbon–oxygen–neon nebula


  • 1.

    Crowther, P. A. Bodily homes of Wolf–Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Smith, N., Li, W., Filippenko, A. V. & Chornock, R. Noticed fractions of core-collapse supernova sorts and preliminary lots in their unmarried and binary progenitor stars. Mon. No longer. R. Astron. Soc. 412, 1522–1538 (2011).

    ADS 

    Google Scholar
     

  • 3.

    Taddia, F. et al. The Carnegie Supernova Mission I: research of stripped-envelope supernova gentle curves. Astron. Astrophys. 609, A136 (2018).


    Google Scholar
     

  • 4.

    Dessart, L. et al. Core-collapse explosions of Wolf–Rayet stars and the relationship to kind IIb/Ib/Ic supernovae. Mon. No longer. R. Astron. Soc. 414, 2985–3005 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Drout, M. R. et al. Hastily evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    ADS 

    Google Scholar
     

  • 6.

    Arcavi, I. et al. Hastily increasing transients within the supernova–superluminous supernova hole. Astrophys. J. 819, 35 (2016).

    ADS 

    Google Scholar
     

  • 7.

    Pursiainen, M. et al. Hastily evolving transients within the Darkish Power Survey. Mon. No longer. R. Astron. Soc. 481, 894–971 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Perley, D. A. et al. The Zwicky Temporary Facility Vibrant Temporary Survey. II. A public statistical pattern for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Bellm, E. C. et al. The Zwicky Temporary Facility: machine review, efficiency, and primary effects. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    ADS 

    Google Scholar
     

  • 10.

    Gal-Yam, A. et al. Actual-time detection and speedy multiwavelength follow-up observations of a extremely subluminous kind II-P supernova from the Palomar Temporary Manufacturing unit Survey. Astrophys. J. 736, 159 (2011).

    ADS 

    Google Scholar
     

  • 11.

    Kool, E. C. et al. SN 2020bqj: a kind Ibn supernova with a long lasting top plateau. Astron. Astrophys. 652, A136 (2021).

    CAS 

    Google Scholar
     

  • 12.

    Arnett, W. D. Kind I supernovae. I—Analytic answers for the early a part of the sunshine curve. Astrophys. J. 253, 785–797 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Drout, M. R. et al. The primary systematic find out about of kind Ibc supernova multi-band gentle curves. Astrophys. J. 741, 97 (2011); erratum Astrophys. J. 753, 180 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Prentice, S. J. et al. Investigating the homes of stripped-envelope supernovae; what are the consequences for his or her progenitors? Mon. No longer. R. Astron. Soc. 485, 1559–1578 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Chatzopoulos, E., Wheeler, J. C. & Vinko, J. Generalized semi-analytical fashions of supernova gentle curves. Astrophys. J. 746, 121 (2012).

    ADS 

    Google Scholar
     

  • 16.

    Rabinak, I. & Waxman, E. The early UV/optical emission from core-collapse supernovae. Astrophys. J. 728, 63 (2011).

    ADS 

    Google Scholar
     

  • 17.

    Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Section. Sci. 62, 407–451 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Fremling, C. et al. The Zwicky Temporary Facility Vibrant Temporary Survey. I. Spectroscopic classification and the redshift completeness of native galaxy catalogs. Astrophys. J. 895, 32 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Foley, R. J. et al. SN 2006jc: a Wolf–Rayet big name exploding in a dense He-rich circumstellar medium. Astrophys. J. 657, L105 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Pastorello, A. et al. Huge stars exploding in a He-rich circumstellar medium—I. Kind Ibn (SN 2006jc-like) occasions. Mon. No longer. R. Astron. Soc. 389, 113–130 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Karamehmetoglu, E. et al. OGLE-2014-SN-131: a long-rising kind Ibn supernova from a enormous progenitor. Astron. Astrophys. 602, A93 (2017).


    Google Scholar
     

  • 23.

    Gal-Yam, A. Observational and bodily classification of supernovae. In Manual of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (2017); https://doi.org/10.1007/978-3-319-21846-5_35.

  • 24.

    Hosseinzadeh, G. et al. Kind Ibn supernovae display photometric homogeneity and spectral range at most gentle. Astrophys. J. 836, 158 (2017).

    ADS 

    Google Scholar
     

  • 25.

    Pastorello, A. et al. Huge stars exploding in a He-rich circumstellar medium—IX. SN 2014av, and characterization of kind Ibn SNe. Mon. No longer. R. Astron. Soc. 456, 853–869 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Perley, D. et al. ZTF/LT discovery of a quick, luminous blue brief with slim carbon options. Temporary Title Server AstroNote 2021-62 (2021); https://www.wis-tns.org/astronotes/astronote/2021-62.

  • 27.

    Pastorello, A. et al. adH0cc spectroscopic classification of SN 2021ckj, an odd “Kind Icn” supernova. Temporary Title Server AstroNote 2021-71 (2021); https://www.wis-tns.org/astronotes/astronote/2021-71.

  • 28.

    Gal-Yam, A. et al. Introducing a brand new supernova classification kind: SN Icn. Temporary Title Server AstroNote 2021-76 (2021); https://www.wis-tns.org/astronotes/astronote/2021-76.

  • 29.

    Gal-Yam, A. A easy research of kind I superluminous supernova top spectra: composition, enlargement velocities, and dynamics. Astrophys. J. 882, 102 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Sharon, A. & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. No longer. R. Astron. Soc. 496, 4517–4545 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Graham, M. J. et al. The Zwicky Temporary Facility: science goals. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    ADS 

    Google Scholar
     

  • 32.

    Yaron, O., Gal-Yam, A., Ofek, E. & Sass, A. The revised remedy of object coordinates (astrometric accuracies) is now energetic at the TNS. Temporary Title Server AstroNote 2019-37 (2019); https://www.wis-tns.org/astronotes/astronote/2019-37.

  • 33.

    Dekany, R. et al. The Zwicky Temporary Facility: looking at machine. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    ADS 

    Google Scholar
     

  • 34.

    Masci, F. J. et al. The Zwicky Temporary Facility: information processing, merchandise, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    ADS 

    Google Scholar
     

  • 35.

    Zackay, B., Ofek, E. O. & Gal-Yam, A. Right kind symbol subtraction—optimum brief detection, photometry, and speculation checking out. Astrophys. J. 830, 27 (2016).

    ADS 

    Google Scholar
     

  • 36.

    Gal-Yam, A. Toddler supernovae from ZTF. In 233rd American Astronomical Society Assembly 131.06 (2019).

  • 37.

    Kasliwal, M. M. et al. The GROWTH Marshal: a dynamic science portal for time-domain astronomy. Publ. Astron. Soc. Pac. 131, 038003 (2019).

    ADS 

    Google Scholar
     

  • 38.

    Bruch, R. et al. ZTF brief discovery record for 2019-06-10. Temporary Title Server Discovery Record 2019-973 (2019); https://www.wis-tns.org/ads/TNSTR-2019-973.

  • 39.

    Strotjohann, N. L. et al. Vibrant, months-long stellar outbursts announce the explosion of interaction-powered supernovae. Astrophys. J. 907, 99 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Cenko, S. B. et al. The Automatic Palomar 60 Inch Telescope. Publ. Astron. Soc. Pac. 118, 1396–1406 (2006).

    ADS 

    Google Scholar
     

  • 41.

    Blagorodnova, N. et al. The SED Gadget: a robot spectrograph for quick brief classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    ADS 

    Google Scholar
     

  • 42.

    Fremling, C. et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806. Astron. Astrophys. 593, A68 (2016).


    Google Scholar
     

  • 43.

    Schulze, S. et al. Cosmic evolution and steel aversion in superluminous supernova host galaxies. Mon. No longer. R. Astron. Soc. 473, 1258–1285 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Aihara, H. et al. The 8th information unencumber of the Sloan Virtual Sky Survey: first information from SDSS-III. Astrophys. J. Suppl. Ser. 193, 29 (2011).

    ADS 

    Google Scholar
     

  • 45.

    Roming, P. W. A. et al. The Swift Extremely-Violet/Optical Telescope. Area Sci. Rev. 120, 95–142 (2005).

    ADS 

    Google Scholar
     

  • 46.

    Gehrels, N. et al. The Swift gamma-ray burst venture. Astrophys. J. 611, 1005 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Virtual Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS 

    Google Scholar
     

  • 48.

    Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011).

    ADS 

    Google Scholar
     

  • 49.

    Pastorello, A. et al. An enormous outburst two years earlier than the core-collapse of a enormous big name. Nature 447, 829–832 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Ofek, E. O. et al. An outburst from a enormous big name 40 days earlier than a supernova explosion. Nature 494, 65–67 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Ofek, E. O. et al. Precursors previous to kind IIn supernova explosions are commonplace: precursor charges, homes, and correlations. Astrophys. J. 789, 104 (2014).

    ADS 

    Google Scholar
     

  • 52.

    Yaron, O. & Gal-Yam, A. WISeREP – an interactive supernova information repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    ADS 

    Google Scholar
     

  • 53.

    Ben-Ami, S. et al. The SED Gadget: a devoted brief IFU spectrograph. In Proc. SPIE 8446: Floor-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S. et al.) 844686 (SPIE, 2012).

  • 54.

    Rigault, M. et al. Absolutely automatic integral discipline spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: efficiency in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    ADS 

    Google Scholar
     

  • 56.

    Piascik, A. S. et al. SPRAT: Spectrograph for the Speedy Acquisition of Transients. Proc. SPIE 9147: Floor-based and Airborne Instrumentation for Astronomy V (eds Ramsay, S. Okay.) 91478H (2014).

  • 57.

    Steele, I. A. et al. The Liverpool Telescope: efficiency and primary effects. Proc. SPIE 5489: Floor-based Telescopes (ed. Oschmann Jr, J. M.) 679–692 (2004).

  • 58.

    Chonis, T. S. et al. LRS2: design, meeting, checking out, and commissioning of the second-generation low-resolution spectrograph for the Interest–Eberly Telescope. Proc. SPIE 9908: Floor-based and Airborne Instrumentation for Astronomy VI (eds Evans, C. J. et al.) 99084C (2016).

  • 59.

    Ramsey, L. W. et al. Early efficiency and provide standing of the Interest–Eberly Telescope. Proc. SPIE 3352: Complex Generation Optical/IR Telescopes VI (ed. Stepp, L. M.) 34–51 (1998).

  • 60.

    Benn, C., Dee, Okay. & Agócs, T. ACAM: a brand new imager/spectrograph for the William Herschel Telescope. Proc. SPIE 7104: Floor-based and Airborne Instrumentation for Astronomy II (eds McLean, I. S. & Casali, M. M.) 70146X (2008).

  • 61.

    Levine, S. E. et al. Standing and function of the Discovery Channel Telescope right through commissioning. Proc. SPIE 8444: Floor-based and Airborne Telescopes IV (eds Stepp, L. M. et al.) 844419 (2012).

  • 62.

    Levine, S. E., & DeGroff, W. T. Standing and imaging efficiency of Lowell Observatory’s Discovery Channel Telescope in its first 12 months of complete science operations. Proc. SPIE 9906: Floor-based and Airborne Telescopes VI (eds Corridor, H. J. et al.) 990621 (2016).

  • 63.

    Oke, J. B. & Gunn, J. E. An effective low- and moderate-resolution spectrograph for the Hale Telescope. Publ. Astron. Soc. Pac. 94, 586–594 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Bellm, E. C. et al. pyraf-dbsp: aid pipeline for the Palomar Double Beam Spectrograph. Astrophysics Supply Code Library https://www.ascl.net/1602.002 (2016).

  • 65.

    Oke, J. B. et al. The Keck Low-Solution Imaging Spectrometer. Publ. Astron. Soc. Pac. 107, 375–385 (1995).

    ADS 

    Google Scholar
     

  • 66.

    Perley, D. A. Absolutely automatic aid of longslit spectroscopy with the Low Solution Imaging Spectrometer on the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    ADS 

    Google Scholar
     

  • 67.

    Sander, A., Hamann, W.-R. & Todt, H. The Galactic WC stars: stellar parameters from spectral analyses point out a brand new evolutionary collection. Astron. Astrophys. 540, A144 (2012).


    Google Scholar
     

  • 68.

    Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Khazov, D. et al. Flash spectroscopy: emission traces from the ionized circumstellar subject matter round <10-day-old kind II supernovae. Astrophys. J. 818, 3 (2016).

    ADS 

    Google Scholar
     

  • 70.

    Bruch, R. J. et al. A big fraction of hydrogen-rich supernova progenitors enjoy increased mass loss in a while previous to explosion. Astrophys. J. 912, 46 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 71.

    Yaron, O. et al. Confined dense circumstellar subject matter surrounding an ordinary kind II supernova. Nat. Phys. 13, 510–517 (2017).

    CAS 

    Google Scholar
     

  • 72.

    Gal-Yam, A. Probably the most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).

    ADS 

    Google Scholar
     

  • 73.

    Valenti, S. et al. The carbon-rich kind Ic SN 2007gr: the photospheric section. Astrophys. J. 673, L155–L158 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Department, D. et al. Comparative direct research of kind Ia supernova spectra. I. SN 1994D. Publ. Astron. Soc. Pac. 117, 545–552 (2005).

    ADS 

    Google Scholar
     

  • 75.

    Karamehmetoglu, E. et al. The luminous and hastily evolving SN 2018bcc: clues towards the starting place of kind Ibn SNe from the Zwicky Temporary Facility. Astron. Astrophys. 649, A163 (2021).

    CAS 

    Google Scholar
     

  • 76.

    Burrows, D. N. et al. The Swift X-Ray Telescope. Area Sci. Rev. 120, 165–195 (2005).

    ADS 

    Google Scholar
     

  • 77.

    Evans, P. A. et al. An internet repository of Swift/XRT gentle curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    ADS 

    Google Scholar
     

  • 78.

    Evans, P. A. et al. Strategies and result of an automated research of an entire pattern of Swift–XRT observations of GRBs. Mon. No longer. R. Astron. Soc. 397, 1177–1201 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 79.

    HI4PI Collaboration. HI4PI: A full-sky H i survey in response to EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).


    Google Scholar
     

  • 80.

    Ho, A. Y. Q. et al. The Koala: a quick blue optical brief with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 81.

    Coppejans, D. L. et al. A mildly relativistic outflow from the vigorous, fast-rising blue optical brief CSS161010 in a dwarf galaxy. Astrophys. J. 895, L23 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 82.

    De, Okay. et al. A sizzling and speedy ultra-stripped supernova that most likely shaped a compact neutron big name binary. Science 362, 201–206 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Yao, Y. et al. SN2019dge: a helium-rich ultra-stripped envelope supernova. Astrophys. J. 900, 46 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 84.

    Ho, A. Y. Q. et al. Proof for late-stage eruptive mass loss within the progenitor to SN2018gep, a broad-lined Ic supernova: pre-explosion emission and a hastily increasing luminous brief. Astrophys. J. 887, 169 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 85.

    Perley, D. A. et al. Actual-time discovery of AT2020xnd: a quick, luminous ultraviolet brief with minimum radioactive ejecta. Mon. No longer. R. Astron. Soc. 887, 5138–5147(2021).

    ADS 

    Google Scholar
     

  • 86.

    Ofek, E. O. et al. SN 2010jl: optical to onerous X-ray observations disclose an explosion embedded in a 10 sun mass cocoon. Astrophys. J. 781, 42 (2014).

    ADS 

    Google Scholar
     

  • 87.

    Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C. & Soderberg, A. M. X-Ray and radio emission from kind IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).

    ADS 

    Google Scholar
     

  • 88.

    Immler, S. et al. Swift and Chandra detections of supernova 2006jc: proof for interplay of the supernova surprise with a circumstellar shell. Astrophys. J. 674, L85–L88 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 89.

    Martin, C. & GALEX Group. The Galaxy Evolution Explorer – early information. In Symposium – World Astronomical Union Vol. 216: Maps of the Cosmos (eds Colless, M. et al.) 221–229 (2005).

  • 90.

    Ahn, C. P. et al. The 9th information unencumber of the Sloan Virtual Sky Survey: first spectroscopic information from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl. Ser. 203, 21 (2012).

    ADS 

    Google Scholar
     

  • 91.

    Wright, E. L. et al. The Broad-field Infrared Survey Explorer (WISE): venture description and preliminary on-orbit efficiency. Astron. J. 140, 1868–1881 (2010).

    ADS 

    Google Scholar
     

  • 92.

    Lang, D. unWISE: unblurred coadds of the WISE imaging. Astron. J 147, 108 (2014).

    ADS 

    Google Scholar
     

  • 93.

    Mainzer, A. et al. Preliminary efficiency of the NEOWISE reactivation venture. Astrophys. J. 792, 30 (2014).

    ADS 

    Google Scholar
     

  • 94.

    Meisner, A. M. et al. Deep full-sky coadds from 3 years of WISE and NEOWISE observations. Astron. J. 154, 161 (2017).

    ADS 

    Google Scholar
     

  • 95.

    Breeveld, A. A. et al. An up to date ultraviolet calibration for the Swift/UVOT. In AIP Conf. Proc. Vol 1358: Gamma Ray Bursts 2010 (eds McEnery, J. E. et al.) 373–376 (2011).

  • 96.

    Wright, A. H. et al. Galaxy and Mass Meeting: correct panchromatic photometry from optical priors the use of LAMBDAR. Mon. No longer. R. Astron. Soc. 460, 765–801 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 97.

    Schulze, S. et al. The Palomar Temporary Manufacturing unit core-collapse supernova host-galaxy pattern. I. Host-galaxy distribution purposes and setting dependence of core-collapse supernovae. Astrophys. J. Supp. Ser. 255, 29 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 98.

    Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving bodily homes from broadband photometry with Prospector: description of the fashion and an illustration of its accuracy the use of 129 galaxies within the native Universe. Astrophys. J. 837, 170 (2017).

    ADS 

    Google Scholar
     

  • 99.

    Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar inhabitants synthesis modeling. I. The relevance of unsure sides of stellar evolution and the preliminary mass serve as to the derived bodily homes of galaxies. Astrophys. J. 699, 486–506 (2009).

    ADS 

    Google Scholar
     

  • 100.

    Foreman-Mackey, D. et al. python-fsps: Python bindings to fsps (V0.1.1). Zenodohttps://zenodo.org/record/12157#.YbjtiUaxXdc (2014).

  • 101.

    Byler, N. et al. Nebular continuum and line emission in stellar inhabitants synthesis fashions. Astrophys. J. 840, 44 (2017).

    ADS 

    Google Scholar
     

  • 102.

    Chabrier, G. Galactic stellar and substellar preliminary mass serve as. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS 

    Google Scholar
     

  • 103.

    Calzetti, D. et al. The mud content material and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS 

    Google Scholar
     

  • 104.

    Speagle, J. S. DYNESTY: a dynamic nested sampling package deal for estimating Bayesian posteriors and evidences. Mon. No longer. R. Astron. Soc. 493, 3132–3158 (2020).

    ADS 

    Google Scholar
     

  • 105.

    Marino, R. A. et al. The O3N2 and N2 abundance signs revisited: advanced calibrations in response to CALIFA and Te-based literature information. Astron. Astrophys. 559, A114 (2013).


    Google Scholar
     

  • 106.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Solar. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 107.

    Lunnan, R. et al. Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have identical host galaxies. Astrophys. J. 787, 138–156 (2014).

    ADS 

    Google Scholar
     

  • 108.

    Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A choice of hydrogen-poor occasions for excessive emission line galaxies. Mon. No longer. R. Astron. Soc. 449, 917–932 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 109.

    Perley, D. A. et al. Host-galaxy homes of 32 low-redshift superluminous supernovae from the Palomar Temporary Manufacturing unit. Astrophys. J. 830, 13 (2016).

    ADS 

    Google Scholar
     

  • 110.

    Kiewe, M. et al. Caltech Core-Cave in Mission (CCCP) observations of kind IIn supernovae: standard homes and implications for his or her progenitor stars. Astrophys. J. 744, 10 (2012).

    ADS 

    Google Scholar
     

  • 111.

    Rubin, A. et al. Kind II supernova energetics and comparability of sunshine curves to shock-cooling fashions. Astrophys. J. 820, 33 (2016).

    ADS 

    Google Scholar
     

  • 112.

    Yao, Y. et al. ZTF early observations of kind Ia supernovae. I. homes of the 2018 pattern. Astrophys. J. 886, 152 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 113.

    Miller, A. A. et al. ZTF early observations of kind Ia supernovae. II. Morning time, the preliminary upward push, and time to achieve most brightness. Astrophys. J. 902, 47 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 114.

    Barbarino, C. et al. Kind Ic supernovae from the (intermediate) Palomar Temporary Manufacturing unit. Preprint at https://arxiv.org/abs/2010.08392 (2020).

  • 115.

    Taddia, F. et al. Research of broad-lined Kind Ic supernovae from the (intermediate) Palomar Temporary Manufacturing unit. Astron. Astrophys. 621, A71 (2019).

    CAS 

    Google Scholar
     

  • 116.

    Gal-Yam, A., Ofek, E. O. & Shemmer, O. Supernova 2002ap: the primary month. Mon. No longer. R. Astron. Soc. 332, L73–L77 (2002).

    ADS 

    Google Scholar
     

  • 117.

    Mazzali, P. A. et al. The kind Ic hypernova SN 2002ap. Astrophys. J. 572, L61–L65 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 118.

    Galama, T. J. et al. An odd supernova within the error field of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 119.

    Campana, S. et al. The affiliation of GRB 060218 with a supernova and the evolution of the surprise wave. Nature 442, 1008–1010 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Bianco, F. B. et al. Multi-color optical and near-infrared gentle curves of 64 stripped-envelope core-collapse supernovae. Astrophys. J. Suppl. Ser. 213, 19 (2014).

    ADS 

    Google Scholar
     

  • 121.

    Richmond, M. W. et al. UBVRI photometry of the sort Ic SN 1994I in M51. Astron. J 111, 327–339 (1996).

    ADS 

    Google Scholar
     

  • 122.

    Sauer, D. N. et al. The homes of the ‘usual’ kind Ic supernova 1994I from spectral fashions. Mon. No longer. R. Astron. Soc. 369, 1939–1948 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 123.

    Ben-Ami, S. et al. Discovery and early multi-wavelength measurements of the vigorous kind Ic supernova PTF12gzk: a massive-star explosion in a dwarf host galaxy. Astrophys. J. 760, L33 (2012).

    ADS 

    Google Scholar
     

  • 124.

    Cao, Y. et al. Discovery, progenitor and early evolution of a stripped envelope supernova iPTF13bvn. Astrophys. J. 775, L7 (2013).

    ADS 

    Google Scholar
     

  • 125.

    Stritzinger, M. et al. Optical photometry of the sort Ia supernova 1999ee and the sort Ib/c supernova 1999ex in IC 5179. Astron. J 124, 2100–2117 (2002).

    ADS 

    Google Scholar
     

  • 126.

    Mazzali, P. A. et al. The metamorphosis of supernova SN 2008D/XRF 080109: a hyperlink between supernovae and GRBs/hypernovae. Science 321, 1185–1188 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Soderberg, A. M. et al. An especially luminous X-ray outburst on the beginning of a supernova. Nature 453, 469–474 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Valenti, S. et al. SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova. Mon. No longer. R. Astron. Soc. 416, 3138–3159 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 129.

    Leisure, A. et al. A quick-evolving luminous brief came upon via K2/Kepler. Nat. Astron. 2, 307–311 (2018).

    ADS 

    Google Scholar
     

  • 130.

    Whitesides, L. et al. iPTF 16asu: a luminous, hastily evolving, and high-velocity supernova. Astrophys. J. 851, 107 (2017).

    ADS 

    Google Scholar
     

  • 131.

    Prentice, S. J. et al. The Cow: discovery of a luminous, sizzling, and hastily evolving brief. Astrophys. J. 865, L3 (2018).

    ADS 

    Google Scholar
     

  • 132.

    Perley, D. A. et al. The short, luminous ultraviolet brief AT2018cow: excessive supernova, or disruption of a celebrity via an intermediate-mass black hollow? Mon. No longer. R. Astron. Soc. 484, 1031–1049 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 133.

    Margutti, R. et al. An embedded X-ray supply shines throughout the aspherical AT 2018cow: revealing the internal workings of essentially the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 134.

    Mazzali, P. A. et al. The Kind Ic SN 2007gr: a census of the ejecta from late-time optical-infrared spectra. Mon. No longer. R. Astron. Soc. 408, 87–96 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 135.

    Soumagnac, M. T. et al. Supernova PTF 12glz: a imaginable surprise breakout pushed via an aspherical wind. Astrophys. J. 872, 141 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 136.

    Smith, N. et al. Episodic mass loss in binary evolution to the Wolf–Rayet section: Keck and HST correct motions of RY Scuti’s nebula. Mon. No longer. R. Astron. Soc. 418, 1959–1972 (2011).

    ADS 

    Google Scholar
     

  • 137.

    Waxman, E. & Katz, B. Surprise breakout principle. In Manual of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (2017); https://doi.org/10.1007/978-3-319-21846-5_33.

  • 138.

    Ganot, N. et al. The detection price of early UV emission from supernovae: a devoted GALEX/PTF survey and calibrated theoretical estimates. Astrophys. J. 820, 57 (2016).

    ADS 

    Google Scholar
     

  • 139.

    Ofek, E. O. et al. Supernova PTF 09UJ: a imaginable surprise breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

    ADS 

    Google Scholar
     

  • 140.

    Smith, N. et al. PTF11iqb: cool supergiant mass-loss that bridges the space between Kind IIn and standard supernovae. Mon. No longer. R. Astron. Soc. 449, 1876–1896 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 141.

    Ben-Ami, S. et al. SN 2010mb: direct proof for a supernova interacting with a considerable amount of hydrogen-free circumstellar subject matter. Astrophys. J. 785, 37 (2014).

    ADS 

    Google Scholar
     

  • 142.

    Soumagnac, M. T. et al. SN 2018fif: the explosion of a big purple supergiant came upon in its infancy via the Zwicky Temporary Facility. Astrophys. J. 902, 6 (2020).

    ADS 
    CAS 

    Google Scholar
     


  • #WCWO #big name #exploding #increasing #carbonoxygenneon #nebula

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *