Technology

Iron pnictides and chalcogenides: a brand new paradigm for superconductivity


  • 1.

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum topic to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    CAS 

    Google Scholar
     

  • 2.

    Scalapino, D. J. A not unusual thread: the pairing interplay for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    CAS 

    Google Scholar
     

  • 3.

    Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor LaO1−xFxFeAs (x = 0.05−0.12) with Tc = 26 Okay. J. Am. Chem. Soc. 130, 3296–3297 (2008). The seminal remark of superconductivity in an iron-arsenide compound.

    CAS 

    Google Scholar
     

  • 4.

    Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with an indication reversal within the order parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 101, 057003 (2008). Theoretical proposal that the s+− superconducting state in FeSCs is mediated by way of spin fluctuations.

    CAS 

    Google Scholar
     

  • 5.

    Kuroki, Okay., Usui, H., Onari, S., Arita, R. & Aoki, H. Pnictogen top as a conceivable transfer between high-Tc nodeless and low-Tc nodal pairings within the iron-based superconductors. Phys. Rev. B 79, 224511 (2009). RPA calculation that presentations the have an effect on of the pnictogen top at the superconducting state.


    Google Scholar
     

  • 6.

    Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Hole symmetry and construction of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).


    Google Scholar
     

  • 7.

    Chubukov, A. V. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Topic Phys. 3, 57–92 (2012). A pedagogical evaluate that compares the RPA and renormalization organization approaches to explain superconductivity in FeSCs.

    CAS 

    Google Scholar
     

  • 8.

    Wang, F. & Lee, D.-H. The electron-pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).

    CAS 

    Google Scholar
     

  • 9.

    Haule, Okay. & Kotliar, G. Coherence–incoherence crossover within the commonplace state of iron oxypnictides and significance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009). This theoretical paintings predicted the coherence–incoherence crossover brought about by way of the Hund’s coupling, which later ended in the concept that of a Hund steel.


    Google Scholar
     

  • 10.

    Yin, Z., Haule, Okay. & Kotliar, G. Kinetic frustration and the character of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011). This find out about supplies rules for organizing the households of FeSCs by way of their correlation power and differentiation of the dxy orbitals.

    CAS 

    Google Scholar
     

  • 11.

    Stadler, Okay. M., Yin, Z. P., von Delft, J., Kotliar, G. & Weichselbaum, A. Dynamical mean-field principle plus numerical renormalization-group find out about of spin-orbital separation in a three-band Hund steel. Phys. Rev. Lett. 115, 136401 (2015).

    CAS 

    Google Scholar
     

  • 12.

    de’ Medici, L., Hassan, S. R., Capone, M. & Dai, X. Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 126401 (2009).


    Google Scholar
     

  • 13.

    Bascones, E., Valenzuela, B. & Calderón, M. J. Orbital differentiation and the position of orbital ordering within the magnetic state of Fe superconductors. Phys. Rev. B 86, 174508 (2012).


    Google Scholar
     

  • 14.

    Yu, R. & Si, Q. Orbital-selective Mott segment in multiorbital fashions for alkaline iron selenides Okay1−xFe2−ySe2. Phys. Rev. Lett. 110, 146402 (2013).


    Google Scholar
     

  • 15.

    de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).


    Google Scholar
     

  • 16.

    Georges, A., Medici, L. D. & Mravlje, J. Robust correlations from Hund’s coupling. Annu. Rev. Condens. Topic Phys. 4, 137–178 (2013).

    CAS 

    Google Scholar
     

  • 17.

    Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    MathSciNet 
    CAS 

    Google Scholar
     

  • 18.

    Lumsden, M. D. & Christianson, A. D. Magnetism in Fe-based superconductors. J. Phys. Condens. Topic 22, 203203 (2010). A topical evaluate that surveys early neutron scattering information on FeSCs, together with the remark of spin-resonance modes within the superconducting state.

    CAS 

    Google Scholar
     

  • 19.

    Inosov, D. et al. Customary-state spin dynamics and temperature-dependent spin-resonance calories in optimally doped BaFe1.85Co0.15As2. Nat. Phys. 6, 178–181 (2010).

    CAS 

    Google Scholar
     

  • 20.

    Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    CAS 

    Google Scholar
     

  • 21.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed topic physics. Annu. Rev. Condens. Topic Phys. 1, 153–178 (2010).

    CAS 

    Google Scholar
     

  • 22.

    Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012). Elastoresistivity measurements disclose the presence of nematic fluctuations around the segment diagram of an FeSC compound.

    CAS 

    Google Scholar
     

  • 23.

    Böhmer, A. E. et al. Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).


    Google Scholar
     

  • 24.

    Gallais, Y. et al. Remark of incipient fee nematicity in Ba(Fe1−XCoX)2As2. Phys. Rev. Lett. 111, 267001 (2013).

    CAS 

    Google Scholar
     

  • 25.

    Zhang, P. et al. Remark of topological superconductivity at the floor of an iron-based superconductor. Science 360, 182–186 (2018). ARPES measurements disclose floor topological spin-helical states in FeTe1−xSex.


    Google Scholar
     

  • 26.

    Singh, D. J. & Du, M.-H. Density practical find out about of LaFeAsO1−xFx: a low provider density superconductor close to itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).

    CAS 

    Google Scholar
     

  • 27.

    Eschrig, H. & Koepernik, Okay. Tight-binding fashions for the iron-based superconductors. Phys. Rev. B 80, 104503 (2009).


    Google Scholar
     

  • 28.

    Cvetkovic, V. & Vafek, O. Area organization symmetry, spin–orbit coupling, and the low-energy efficient Hamiltonian for iron-based superconductors. Phys. Rev. B 88, 134510 (2013).


    Google Scholar
     

  • 29.

    Borisenko, S. et al. Direct remark of spin–orbit coupling in iron-based superconductors. Nat. Phys. 12, 311–317 (2016).

    CAS 

    Google Scholar
     

  • 30.

    Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).


    Google Scholar
     

  • 31.

    Yang, W. L. et al. Proof for susceptible digital correlations in iron pnictides. Phys. Rev. B 80, 014508 (2009).


    Google Scholar
     

  • 32.

    Coldea, A. I. Digital nematic states tuned by way of isoelectronic substitution in bulk FeSe1−xSx. Entrance. Phys. 8, 594500 (2021).


    Google Scholar
     

  • 33.

    Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting hole of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Topic 27, 293203 (2015).

    CAS 

    Google Scholar
     

  • 34.

    Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Position of the orbital stage of freedom in iron-based superconductors. npj Quantum Mater. 2, 57 (2017).


    Google Scholar
     

  • 35.

    Carrington, A. Quantum oscillation research of the Fermi floor of iron-pnictide superconductors. Rep. Prog. Phys. 74, 124507 (2011).


    Google Scholar
     

  • 36.

    Coldea, A. I. et al. Fermi floor of superconducting LaFePO made up our minds from quantum oscillations. Phys. Rev. Lett. 101, 216402 (2008).

    CAS 

    Google Scholar
     

  • 37.

    Qazilbash, M. et al. Digital correlations within the iron pnictides. Nat. Phys. 5, 647–650 (2009).

    CAS 

    Google Scholar
     

  • 38.

    Haule, Okay., Shim, J. H. & Kotliar, G. Correlated digital construction of LaO1−xFxFeAs. Phys. Rev. Lett. 100, 226402 (2008).

    CAS 

    Google Scholar
     

  • 39.

    Skornyakov, S. L. et al. Classification of the digital correlation power within the iron pnictides: the case of the guardian compound BaFe2As2. Phys. Rev. B 80, 092501 (2009).


    Google Scholar
     

  • 40.

    Werner, P. et al. Satellites and big doping and temperature dependence of digital houses in hole-doped BaFe2As2. Nat. Phys. 8, 331–337 (2012).

    CAS 

    Google Scholar
     

  • 41.

    Ferber, J., Foyevtsova, Okay., Valentí, R. & Jeschke, H. O. LDA + DMFT find out about of the consequences of correlation in LiFeAs. Phys. Rev. B 85, 094505 (2012).


    Google Scholar
     

  • 42.

    Lee, G. et al. Orbital selective Fermi floor shifts and mechanism of excessive Tc superconductivity in correlated AFeAs (A = Li, Na). Phys. Rev. Lett. 109, 177001 (2012).


    Google Scholar
     

  • 43.

    Borisenko, S. V. et al. Superconductivity with out nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).

    CAS 

    Google Scholar
     

  • 44.

    Fanfarillo, L. et al. Orbital-dependent Fermi floor shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).


    Google Scholar
     

  • 45.

    Ortenzi, L., Cappelluti, E., Benfatto, L. & Pietronero, L. Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009).

    CAS 

    Google Scholar
     

  • 46.

    Zantout, Okay., Backes, S. & Valentí, R. Impact of nonlocal correlations at the digital construction of LiFeAs. Phys. Rev. Lett. 123, 256401 (2019).

    CAS 

    Google Scholar
     

  • 47.

    Tomczak, J. M., van Schilfgaarde, M. & Kotliar, G. Many-body results in iron pnictides and chalcogenides: nonlocal as opposed to dynamic foundation of efficient lots. Phys. Rev. Lett. 109, 237010 (2012).


    Google Scholar
     

  • 48.

    van der Marel, D. & Sawatzky, G. A. Electron–electron interplay and localization in d and f transition metals. Phys. Rev. B 37, 10674 (1988).


    Google Scholar
     

  • 49.

    Hardy, F. et al. Proof of robust correlations and coherence–incoherence crossover within the iron pnictide superconductor KFe2As2. Phys. Rev. Lett. 111, 027002 (2013).

    CAS 

    Google Scholar
     

  • 50.

    Yin, Z. P., Haule, Okay. & Kotliar, G. Fractional power-law conduct and its foundation in iron-chalcogenide and ruthenate superconductors: insights from first-principles calculations. Phys. Rev. B 86, 195141 (2012).


    Google Scholar
     

  • 51.

    Kreisel, A., Hirschfeld, P. J. & Andersen, B. M. At the outstanding superconductivity of FeSe and its shut cousins. Symmetry 12, 1402 (2020).

    CAS 

    Google Scholar
     

  • 52.

    Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, hole anisotropy, and spin resonance excitations in a multiorbital tJ1J2 type for iron pnictides. Phys. Rev. B 89, 024509 (2014).


    Google Scholar
     

  • 53.

    Fanfarillo, L., Valli, A. & Capone, M. Synergy between Hund-driven correlations and boson-mediated superconductivity. Phys. Rev. Lett. 125, 177001 (2020).

    CAS 

    Google Scholar
     

  • 54.

    Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017). STM remark of a robust hole anisotropy in FeSe and proposal of orbital differentiation throughout the superconducting state.

    CAS 

    Google Scholar
     

  • 55.

    Rhodes, L. C. et al. Scaling of the superconducting hole with orbital personality in FeSe. Phys. Rev. B 98, 180503 (2018).

    CAS 

    Google Scholar
     

  • 56.

    Liu, D. et al. Orbital foundation of extraordinarily anisotropic superconducting hole in nematic segment of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).

    CAS 

    Google Scholar
     

  • 57.

    Yin, Z., Haule, Okay. & Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors. Nat. Phys. 10, 845–850 (2014).

    CAS 

    Google Scholar
     

  • 58.

    Pelliciari, J. et al. Magnetic second evolution and spin freezing in doped BaFe2As2. Sci. Rep. 7, 8003 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Wang, M. et al. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013).


    Google Scholar
     

  • 60.

    Christensen, M. H., Kang, J., Andersen, B. M., Eremin, I. & Fernandes, R. M. Spin reorientation pushed by way of the interaction between spin-orbit coupling and Hund’s rule coupling in iron pnictides. Phys. Rev. B 92, 214509 (2015).


    Google Scholar
     

  • 61.

    Qureshi, N. et al. Inelastic neutron-scattering measurements of incommensurate magnetic excitations on superconducting LiFeAs unmarried crystals. Phys. Rev. Lett. 108, 117001 (2012).

    CAS 

    Google Scholar
     

  • 62.

    Wang, Q. et al. Magnetic flooring state of FeSe. Nat. Commun. 7, 12182 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Lumsden, M. D. et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex. Nat. Phys. 6, 182–186 (2010).

    CAS 

    Google Scholar
     

  • 64.

    Liu, T. et al. From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1−xIntercourse. Nat. Mater. 9, 718–720 (2010).


    Google Scholar
     

  • 65.

    Gastiasoro, M. N. & Andersen, B. M. Enhancement of magnetic stripe order in iron-pnictide superconductors from the interplay between conduction electrons and magnetic impurities. Phys. Rev. Lett. 113, 067002 (2014).

    CAS 

    Google Scholar
     

  • 66.

    Pratt, D. Okay. et al. Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors. Phys. Rev. Lett. 106, 257001 (2011).

    CAS 

    Google Scholar
     

  • 67.

    Allred, J. M. et al. Double-Q spin-density wave in iron arsenide superconductors. Nat. Phys. 12, 493–498 (2016).

    CAS 

    Google Scholar
     

  • 68.

    Lorenzana, J., Seibold, G., Ortix, C. & Grilli, M. Competing orders in FeAs layers. Phys. Rev. Lett. 101, 186402 (2008).

    CAS 

    Google Scholar
     

  • 69.

    Fernandes, R. M., Kivelson, S. A. & Berg, E. Vestigial chiral and fee orders from bidirectional spin-density waves: software to the iron-based superconductors. Phys. Rev. B 93, 014511 (2016).


    Google Scholar
     

  • 70.

    Meier, W. R. et al. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor. npj Quantum Mater. 3, 5 (2018).


    Google Scholar
     

  • 71.

    Si, Q. & Abrahams, E. Robust correlations and magnetic frustration within the excessive Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).


    Google Scholar
     

  • 72.

    Website positioning, Okay., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital trade coupling type of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).


    Google Scholar
     

  • 73.

    Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic foundation in iron-based high-temperature superconductors. Nat. Phys. 8, 709–718 (2012).

    CAS 

    Google Scholar
     

  • 74.

    Eremin, I. & Chubukov, A. V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Phys. Rev. B 81, 024511 (2010).


    Google Scholar
     

  • 75.

    Fernandes, R. M. & Chubukov, A. V. Low-energy microscopic fashions for iron-based superconductors: a evaluate. Rep. Prog. Phys. 80, 014503 (2016).


    Google Scholar
     

  • 76.

    Yildirim, T. Foundation of the 150-Okay anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural segment transition. Phys. Rev. Lett. 101, 057010 (2008).

    CAS 

    Google Scholar
     

  • 77.

    Glasbrenner, J. et al. Impact of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).

    CAS 

    Google Scholar
     

  • 78.

    Hirayama, M., Misawa, T., Miyake, T. & Imada, M. Ab initio research of magnetism within the iron chalcogenides FeTe and FeSe. J. Phys. Soc. Jpn 84, 093703 (2015).


    Google Scholar
     

  • 79.

    Abrahams, E. & Si, Q. Quantum criticality within the iron pnictides and chalcogenides. J. Phys. Condens. Topic 23, 223201 (2011).


    Google Scholar
     

  • 80.

    Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum essential level mendacity underneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Topic Phys. 5, 113–135 (2014). A evaluate of the proof of quantum essential behaviour in FeSCs, together with the remark of a pointy height within the doping-dependent penetration intensity.

    CAS 

    Google Scholar
     

  • 81.

    Hayes, I. M. et al. Scaling between magnetic subject and temperature within the high-temperature superconductor BaFe2 (As1−xPx)2. Nat. Phys. 12, 916–919 (2016).


    Google Scholar
     

  • 82.

    Chowdhury, D., Swingle, B., Berg, E. & Sachdev, S. Singularity of the London penetration intensity at quantum essential issues in superconductors. Phys. Rev. Lett. 111, 157004 (2013).


    Google Scholar
     

  • 83.

    Levchenko, A., Vavilov, M. G., Khodas, M. & Chubukov, A. V. Enhancement of the London penetration intensity in pnictides on the onset of spin-density-wave order below superconducting dome. Phys. Rev. Lett. 110, 177003 (2013).

    CAS 

    Google Scholar
     

  • 84.

    Lu, X. et al. Nematic spin correlations within the tetragonal state of uniaxial-strained BaFe2−xNixAs2. Science 345, 657–600 (2014). Inelastic neutron scattering experiments in a detwinned FeSC compound disclose the intertwining between nematic order and spin fluctuations.

    CAS 

    Google Scholar
     

  • 85.

    Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    CAS 

    Google Scholar
     

  • 86.

    Mirri, C. et al. Foundation of the resistive anisotropy within the digital nematic segment of BaFe2As2 published by way of optical spectroscopy. Phys. Rev. Lett. 115, 107001 (2015).

    CAS 

    Google Scholar
     

  • 87.

    Chuang, T.-M. et al. Nematic digital construction within the “guardian” state of the iron-based superconductor Ca(Fe1−xCox)2As2. Science 327, 181–184 (2010).

    CAS 

    Google Scholar
     

  • 88.

    Liang, S., Moreo, A. & Dagotto, E. Nematic state of pnictides stabilized by way of interaction between spin, orbital, and lattice levels of freedom. Phys. Rev. Lett. 111, 047004 (2013).


    Google Scholar
     

  • 89.

    Lee, C.-C., Yin, W.-G. & Ku, W. Ferro-orbital order and robust magnetic anisotropy within the guardian compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).


    Google Scholar
     

  • 90.

    Lv, W., Krüger, F. & Phillips, P. Orbital ordering and unfrustrated (π, 0) magnetism from degenerate double trade within the iron pnictides. Phys. Rev. B 82, 045125 (2010).


    Google Scholar
     

  • 91.

    Fang, C., Yao, H., W.-F. Tsai, J. Hu, & S. A. Kivelson, Principle of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).


    Google Scholar
     

  • 92.

    Xu, C., Müller, M. & Sachdev, S. Ising and spin orders within the iron-based superconductors. Phys. Rev. B 78, 020501 (2008).


    Google Scholar
     

  • 93.

    Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum fabrics: nematicity and past. Annu. Rev. Condens. Topic Phys. 10, 133–154 (2019).


    Google Scholar
     

  • 94.

    Wang, F., Kivelson, S. A. & LeeD.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).

    CAS 

    Google Scholar
     

  • 95.

    Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order within the iron pnictides. Phys. Rev. B 85, 024534 (2012).


    Google Scholar
     

  • 96.

    Gati, E., Xiang, L., Bud’ko, S. L. & Canfield, P. C. Position of the Fermi floor for the pressure-tuned nematic transition within the BaFe2As2 circle of relatives. Phys. Rev. B 100, 064512 (2019).

    CAS 

    Google Scholar
     

  • 97.

    Fernandes, R. M., Böhmer, A. E., Meingast, C. & Schmalian, J. Scaling between magnetic and lattice fluctuations in iron pnictide superconductors. Phys. Rev. Lett. 111, 137001 (2013).


    Google Scholar
     

  • 98.

    Baek, S. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

    CAS 

    Google Scholar
     

  • 99.

    Böhmer, A. E. et al. Distinct stress evolution of coupled nematic and magnetic orders in FeSe. Phys. Rev. B 100, 064515 (2019).


    Google Scholar
     

  • 100.

    Suzuki, Y. et al. Momentum-dependent signal inversion of orbital order in superconducting FeSe. Phys. Rev. B 92, 205117 (2015).


    Google Scholar
     

  • 101.

    Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Superconductivity and non-Fermi liquid conduct close to a nematic quantum essential level. Proc. Natl Acad. Sci. USA 114, 4905–4910 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Klein, A. & Chubukov, A. V. Superconductivity close to a nematic quantum essential level: interaction between scorching and lukewarm areas. Phys. Rev. B 98, 220501 (2018).

    CAS 

    Google Scholar
     

  • 103.

    Worasaran, T. et al. Nematic quantum criticality in an Fe-based superconductor published by way of strain-tuning. Science 372, 973–977 (2021).

    CAS 

    Google Scholar
     

  • 104.

    Shibauchi, T., Hanaguri, T. & Matsuda, Y. Unique superconducting states in FeSe-based fabrics. J. Phys. Soc. Jpn 89, 102002 (2020).


    Google Scholar
     

  • 105.

    Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 16, 89–94 (2020).

    CAS 

    Google Scholar
     

  • 106.

    Huang, D. & Hoffman, J. E. Monolayer FeSe on SrTiO3. Annu. Rev. Condens. Topic Phys. 8, 311–336 (2017).

    CAS 

    Google Scholar
     

  • 107.

    Hosono, H., Yamamoto, A., Hiramatsu, H. & Ma, Y. Contemporary advances in iron-based superconductors towards programs. Mater. Nowadays 21, 278–302 (2018).

    CAS 

    Google Scholar
     

  • 108.

    Boeri, L., Dolgov, O. V. & Golubov, A. A. Is LaFeAsO1−xFx an electron–phonon superconductor? Phys. Rev. Lett. 101, 026403 (2008).

    CAS 

    Google Scholar
     

  • 109.

    Mandal, S., Cohen, R. E. & Haule, Okay. Robust pressure-dependent electron–phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).


    Google Scholar
     

  • 110.

    Lee, J. et al. Interfacial mode coupling because the foundation of the enhancement of Tc in FeSe motion pictures on SrTiO3. Nature 515, 245–248 (2014). The remark of a connection between a substrate phonon mode and the enhancement of superconductivity in monolayer FeSe grown on SrTiO3.

    CAS 

    Google Scholar
     

  • 111.

    Thomale, R., Platt, C., Hanke, W., Hu, J. & Bernevig, B. A. Unique d-wave superconducting state of strongly hole-doped OkayxBa1−xFe2As2. Phys. Rev. Lett. 107, 117001 (2011).


    Google Scholar
     

  • 112.

    Paul, I. & Garst, M. Lattice results on nematic quantum criticality in metals. Phys. Rev. Lett. 118, 227601 (2017).

    CAS 

    Google Scholar
     

  • 113.

    Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: research of the five-orbital Hubbard–Holstein type. Phys. Rev. Lett. 104, 157001 (2010).


    Google Scholar
     

  • 114.

    Chen, C.-T., Tsuei, C., Ketchen, M., Ren, Z.-A. & Zhao, Z. Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop. Nat. Phys. 6, 260–264 (2010).

    CAS 

    Google Scholar
     

  • 115.

    Hanaguri, T., Niitaka, S., Kuroki, Okay. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    CAS 

    Google Scholar
     

  • 116.

    Cho, Okay., Kończykowski, M., Teknowijoyo, S., Tanatar, M. A. & Prozorov, R. The usage of electron irradiation to probe iron-based superconductors. Supercond. Sci. Technol. 31, 064002 (2018).


    Google Scholar
     

  • 117.

    Yang, H. et al. In-gap quasiparticle excitations caused by way of non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As published by way of scanning tunnelling spectroscopy. Nat. Commun. 4, 2749 (2013).


    Google Scholar
     

  • 118.

    Okazaki, Okay. et al. Octet-line node construction of superconducting order parameter in KFe2As2. Science 337, 1314–1317 (2012). Direct remark of unintended nodes in a hole-doped FeSC compound by means of laser ARPES measurements.

    CAS 

    Google Scholar
     

  • 119.

    Lee, T.-H., Chubukov, A. V., Miao, H. & Kotliar, G. Pairing mechanism in Hund’s steel superconductors and the universality of the superconducting hole to essential temperature ratio. Phys. Rev. Lett. 121, 187003 (2018).

    CAS 

    Google Scholar
     

  • 120.

    Stanev, V. & Tešanović, Z. 3-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 81, 134522 (2010).


    Google Scholar
     

  • 121.

    Lee, W.-C., Zhang, S.-C. & Wu, C. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors. Phys. Rev. Lett. 102, 217002 (2009).


    Google Scholar
     

  • 122.

    Grinenko, V. et al. Superconductivity with damaged time-reversal symmetry inside of a superconducting s-wave state. Nat. Phys. 16, 789–794 (2020).

    CAS 

    Google Scholar
     

  • 123.

    Kretzschmar, F. et al. Raman-scattering detection of just about degenerate s-wave and d-wave pairing channels in iron-based Ba0.6Okay0.4Fe2As2 and Rb0.8Fe1.6Se2 superconductors. Phys. Rev. Lett. 110, 187002 (2013).

    CAS 

    Google Scholar
     

  • 124.

    Thorsmølle, V. Okay. et al. Crucial quadrupole fluctuations and collective modes in iron pnictide superconductors. Phys. Rev. B 93, 054515 (2016).


    Google Scholar
     

  • 125.

    Gallais, Y., Paul, I., Chauvière, L. & Schmalian, J. Nematic resonance within the Raman reaction of iron-based superconductors. Phys. Rev. Lett. 116, 017001 (2016).


    Google Scholar
     

  • 126.

    Tafti, F. et al. Surprising reversal within the stress dependence of Tc within the iron-based superconductor KFe2As2. Nat. Phys. 9, 349–352 (2013).

    CAS 

    Google Scholar
     

  • 127.

    Rinott, S. et al. Tuning around the BCS–BEC crossover within the multiband superconductor Fe1+ySexTe1−x: an angle-resolved photoemission find out about. Sci. Adv. 3, e1602372 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Lohani, H. et al. Band inversion and topology of the majority digital construction in FeSe0.45Te0.55. Phys. Rev. B 101, 245146 (2020).

    CAS 

    Google Scholar
     

  • 129.

    Zhang, P. et al. A couple of topological states in iron-based superconductors. Nat. Phys. 15, 41–47 (2019).

    CAS 

    Google Scholar
     

  • 130.

    König, E. J. & Coleman, P. Crystalline-symmetry-protected helical Majorana modes within the iron pnictides. Phys. Rev. Lett. 122, 207001 (2019).


    Google Scholar
     

  • 131.

    Kong, L. et al. Part-integer degree shift of vortex certain states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    CAS 

    Google Scholar
     

  • 132.

    Wang, D. et al. Proof for Majorana certain states in an iron-based superconductor. Science 362, 333–335 (2018). STM measurements disclose a zero-bias height inside of vortices of superconducting FeTe1−xSex suggestive of Majorana 0 modes.

    CAS 

    Google Scholar
     

  • 133.

    Machida, T. et al. 0-energy vortex certain state within the superconducting topological floor state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    CAS 

    Google Scholar
     

  • 134.

    Yin, J.-X. et al. Remark of a powerful zero-energy certain state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    CAS 

    Google Scholar
     

  • 135.

    Chen, C. et al. Atomic line defects and zero-energy finish states in monolayer Fe(Te,Se) high-temperature superconductors. Nat. Phys. 16, 536–540 (2020).

    CAS 

    Google Scholar
     

  • 136.

    Wang, Z. et al. Proof for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    CAS 

    Google Scholar
     

  • 137.

    Zhang, R.-X., Cole, W. S. & Das Sarma, S. Helical hinge Majorana modes in iron-based superconductors. Phys. Rev. Lett. 122, 187001 (2019).

    CAS 

    Google Scholar
     

  • 138.

    Misawa, T., Nakamura, Okay. & Imada, M. Ab initio proof for robust correlation related to Mott proximity in iron-based superconductors. Phys. Rev. Lett. 108, 177007 (2012).


    Google Scholar
     

  • 139.

    Aichhorn, M., Biermann, S., Miyake, T., Georges, A. & Imada, M. Theoretical proof for robust correlations and incoherent metal state in FeSe. Phys. Rev. B 82, 064504 (2010).


    Google Scholar
     

  • 140.

    Miyake, T., Nakamura, Okay., Arita, R. & Imada, M. Comparability of ab initio low-energy fashions for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe: electron correlation and covalency. J. Phys. Soc. Jpn 79, 044705 (2010).


    Google Scholar
     

  • 141.

    Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking within the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Kong, L. et al. Majorana 0 modes in impurity-assisted vortex of LiFeAs superconductor. Nat. Commun. 12, 4146 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Karahasanovic, U. & Schmalian, J. Elastic coupling and spin-driven nematicity in iron-based superconductors. Phys. Rev. B 93, 064520 (2016).


    Google Scholar
     

  • 144.

    Dioguardi, A. P. et al. NMR proof for inhomogeneous glassy conduct pushed by way of nematic fluctuations in iron arsenide superconductors. Phys. Rev. B 92, 165116 (2015).


    Google Scholar
     

  • 145.

    Frandsen, B. A., Wang, Q., Wu, S., Zhao, J. & Birgeneau, R. J. Quantitative characterization of short-range orthorhombic fluctuations in FeSe thru pair distribution serve as research. Phys. Rev. B 100, 020504 (2019).

    CAS 

    Google Scholar
     

  • 146.

    Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 147.

    Vafek, O. & Chubukov, A. V. Hund interplay, spin–orbit coupling, and the mechanism of superconductivity in strongly hole-doped iron pnictides. Phys. Rev. Lett. 118, 087003 (2017).


    Google Scholar
     

  • 148.

    Katayama, N. et al. Superconductivity in Ca1−xLos angelesxFeAs2: a singular 112-type iron pnictide with arsenic zigzag bonds. J. Phys. Soc. Jpn 82, 123702 (2013).


    Google Scholar
     

  • 149.

    Dagotto, E. Colloquium: The surprising houses of alkali steel iron selenide superconductors. Rev. Mod. Phys. 85, 849–867 (2013).

    CAS 

    Google Scholar
     

  • 150.

    Wu, S., Frandsen, B. A., Wang, M., Yi, M. & Birgeneau, R. Iron-based chalcogenide spin ladder BaFe2X3 (X = Se, S). J. Supercond. Nov. Magn. 33, 143–158 (2020).

    CAS 

    Google Scholar
     

  • 151.

    Momma, Okay. & Izumi, F. VESTA 3 for third-dimensional visualization of crystal, volumetric and morphology information. J. Appl.Crystallogr. 44, 1272–1276 (2011).

    CAS 

    Google Scholar
     

  • 152.

    Kong, L. & Ding, H. Emergent vortex Majorana 0 mode in iron-based superconductors. Acta Phys. Sin. 69, 110301 (2020).


    Google Scholar
     


  • #Iron #pnictides #chalcogenides #newparadigm #superconductivity

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *