Technology

Sensory illustration and detection mechanisms of intestine osmolality alternate


  • 1.

    Browning, Ok. N., Verheijden, S. & Boeckxstaens, G. E. The vagus nerve in urge for food law, temper, and intestinal irritation. Gastroenterology 152, 730–744 (2017).

    PubMed 

    Google Scholar
     

  • 2.

    Kim, Ok. S., Seeley, R. J. & Sandoval, D. A. Signalling from the outer edge to the mind that regulates power homeostasis. Nat. Rev. Neurosci. 19, 185–196 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Andermann, M. L. & Lowell, B. B. Towards a wiring diagram working out of urge for food regulate. Neuron 95, 757–778 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Augustine, V., Lee, S. & Oka, Y. Neural regulate and modulation of thirst, sodium urge for food, and starvation. Mobile 180, 25–32 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Zimmerman, C. A., Leib, D. E. & Knight, Z. A. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Augustine, V. et al. Hierarchical neural structure underlying thirst law. Nature 555, 204–209 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Ichiki, T., Augustine, V. & Oka, Y. Neural populations for keeping up frame fluid stability. Curr. Opin. Neurobiol. 57, 134–140 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zimmerman, C. A. & Knight, Z. A. Layers of indicators that control urge for food. Curr. Opin. Neurobiol. 64, 79–88 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Lowell, B. B. New neuroscience of homeostasis and drives for meals, water, and salt. N. Engl. J. Med. 380, 459–471 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Augustine, V., Gokce, S. Ok. & Oka, Y. Peripheral and central nutrient sensing underlying urge for food law. Traits Neurosci. 41, 526–539 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Thrasher, T. N., Nistal-Herrera, J. F., Keil, L. C. & Ramsay, D. J. Satiety and inhibition of vasopressin secretion after consuming in dehydrated canine. Am. J. Physiol. 240, E394–E401 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Zimmerman, C. A. et al. A gut-to-brain sign of fluid osmolarity controls thirst satiation. Nature 568, 98–102 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Augustine, V. et al. Temporally and spatially distinct thirst satiation indicators. Neuron 103, 242–249.e244 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Lechner, S. G. et al. The molecular and mobile id of peripheral osmoreceptors. Neuron 69, 332–344 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Brierley, S. M. et al. Selective position for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Zimmer, L. J., Meliza, L. & Hsiao, S. Results of cervical and subdiaphragmatic vagotomy on osmotic and volemic thirst. Physiol. Behav. 16, 665–670 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Smith, G. P. & Jerome, C. Results of overall and selective belly vagotomies on water consumption in rats. J. Auton. Nerv. Syst. 9, 259–271 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Kim, D. Y. et al. A neural circuit mechanism for mechanosensory comments regulate of ingestion. Nature 580, 376–380 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Williams, E. Ok. et al. Sensory neurons that come across stretch and vitamins within the digestive device. Mobile 166, 209–221 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Kaelberer, M. M. et al. A intestine–mind neural circuit for nutrient sensory transduction. Science 361, eaat523 (2018).


    Google Scholar
     

  • 21.

    Tan, H. E. et al. The intestine–mind axis mediates sugar choice. Nature 580, 511–516 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Kupari, J., Haring, M., Agirre, E., Castelo-Branco, G. & Ernfors, P. An atlas of vagal sensory neurons and their molecular specialization. Mobile Rep. 27, 2508–2523.e2504 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Bai, L. et al. Genetic id of vagal sensory neurons that regulate feeding. Mobile 179, 1129–1143.e1123 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Prescott, S. L., Umans, B. D., Williams, E. Ok., Brust, R. D. & Liberles, S. D. An airway coverage program published via sweeping genetic regulate of vagal afferents. Mobile 181, 574–589.e514 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Adachi, A., Niijima, A. & Jacobs, H. L. An hepatic osmoreceptor mechanism within the rat: electrophysiological and behavioral research. Am. J. Physiol. 231, 1043–1049 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Baertschi, A. J. & Vallet, P. G. Osmosensitivity of the hepatic portal vein space and vasopressin free up in rats. J. Physiol. 315, 217–230 (1981).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Morita, H., Fujiki, N., Hagiike, M., Yamaguchi, O. & Lee, Ok. Practical proof for involvement of bumetanide-sensitive Na+Ok+2Cl cotransport within the hepatoportal Na+ receptor of the Sprague–Dawley rat. Neurosci. Lett. 264, 65–68 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Niijima, A. Glucose-sensitive afferent nerve fibres within the hepatic department of the vagus nerve within the guinea-pig. J. Physiol. 332, 315–323 (1982).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    McKinley, M. J. & Johnson, A. Ok. The physiological law of thirst and fluid consumption. Information Physiol Sci 19, 1–6 (2004).

    PubMed 

    Google Scholar
     

  • 30.

    Gribble, F. M. & Reimann, F. Serve as and mechanisms of enteroendocrine cells and intestine hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Christofides, N. D. et al. Free up of gastrointestinal hormones following an oral water load. Experientia 35, 1521–1523 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Costa, M. & Furness, J. B. The origins, pathways and terminations of neurons with VIP-like immunoreactivity within the guinea-pig small gut. Neuroscience 8, 665–676 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Talbot, J. et al. Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Furness, J. B. The enteric worried device and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Giovannucci, A. et al. CaImAn an open supply software for scalable calcium imaging information research. eLife 8, e38173 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Kennedy, A. et al. Stimulus-specific hypothalamic encoding of a continual defensive state. Nature 586, 730–734 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Zocchi, D., Wennemuth, G. & Oka, Y. The mobile mechanism for water detection within the mammalian style device. Nat. Neurosci. 20, 927–933 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Xie, C., Wei, W., Zhang, T., Dirsch, O. & Dahmen, U. Tracking of systemic and hepatic hemodynamic parameters in mice. J. Vis. Exp. 92, e51955 (2014).


    Google Scholar
     

  • 39.

    McHugh, J. et al. Portal osmopressor mechanism related to temporary receptor doable vanilloid 4 and blood power regulate. High blood pressure 55, 1438–1443 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Lerner, T. N. et al. Intact-brain analyses divulge distinct knowledge carried via SNc dopamine subcircuits. Mobile 162, 635–647 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Han, W. et al. A neural circuit for gut-induced praise. Mobile 175, 665–678.e623 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Hama, H. et al. ScaleS: an optical clearing palette for organic imaging. Nat. Neurosci. 18, 1518–1529 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    L’Heureux-Bouron, D. et al. Overall subdiaphragmatic vagotomy does now not suppress prime protein diet-induced meals consumption despair in rats. J. Nutr. 133, 2639–2642 (2003).

    PubMed 

    Google Scholar
     

  • 44.

    Lee, S. et al. Chemosensory modulation of neural circuits for sodium urge for food. Nature 568, 93–97 (2019).


  • #Sensory #illustration #detection #mechanisms #intestine #osmolality #alternate

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *