Technology

Herpesviruses assimilate kinesin to supply motorized viral debris


  • 1.

    Smith, G. Herpesvirus shipping to the worried device and again once more. Annu. Rev. Microbiol. 66, 153–176 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Lafaille, F. G. et al. Interpreting human cell-autonomous anti-HSV-1 immunity within the central worried device. Entrance. Immunol. 6, 208 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Zaichick, S. V. et al. The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid shipping and neuroinvasion. Cellular Host Microbe 13, 193–203 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Smith, G. A., Pomeranz, L., Gross, S. P. & Enquist, L. W. Native modulation of plus-end shipping objectives herpesvirus access and egress in sensory axons. Proc. Natl Acad. Sci. USA 101, 16034–16039 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Antinone, S. E. & Smith, G. A. Retrograde axon shipping of herpes simplex virus and pseudorabies virus: a live-cell comparative research. J. Virol. 84, 1504–1512 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Pernigo, S., Lamprecht, A., Steiner, R. A. & Dodding, M. P. Structural foundation for kinesin-1:shipment popularity. Science 340, 356–359 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Robert, A. et al. Kinesin-dependent shipping of keratin filaments: a unified mechanism for intermediate filament shipping. FASEB J. 33, 388–399 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Bish, S. E., Music, W. & Stein, D. C. Quantification of bacterial internalization via host cells the use of a β-lactamase reporter stress: Neisseria gonorrhoeae invasion into cervical epithelial cells calls for bacterial viability. Microbes Infect. 10, 1182–1191 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Heine, J. W., Honess, R. W., Cassai, E. & Roizman, B. Proteins laid out in herpes simplex virus. XII. The virion polypeptides of form 1 lines. J Virol 14, 640–651 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Cavrois, M., De Noronha, C. & Greene, W. C. A delicate and explicit enzyme-based assay detecting HIV-1 virion fusion in number one T lymphocytes. Nat. Biotechnol. 20, 1151–1154 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Lyman, M. G., Feierbach, B., Curanovic, D., Bisher, M. & Enquist, L. W. PRV Us9 directs axonal sorting of viral capsids. J. Virol. 81, 11363–11371 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Scherer, J. et al. A Kinesin-3 recruitment complicated facilitates axonal sorting of enveloped alpha herpesvirus capsids. PLoS Pathog. 16, e1007985 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Diwaker, D., Murray, J. W., Barnes, J., Wolkoff, A. W. & Wilson, D. W. Deletion of the pseudorabies virus gE/gI–US9p complicated disrupts kinesin KIF1A and KIF5C recruitment right through egress, and alters the homes of microtubule-dependent shipping in vitro. PLoS Pathog. 16, e1008597 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    DuRaine, G., Wisner, T. W., Howard, P., Williams, M. & Johnson, D. C. Herpes simplex virus gE/gI and US9 advertise each envelopment and sorting of virus debris within the cytoplasm of neurons, two processes that precede anterograde shipping in axons. J. Virol. 91, e00050-17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Engelke, M. F. et al. Engineered kinesin motor proteins amenable to small-molecule inhibition. Nat. Commun. 7, 11159 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Schipke, J. et al. The C terminus of the massive tegument protein pUL36 accommodates more than one capsid binding websites that serve as otherwise right through meeting and mobile access of herpes simplex virus. J. Virol. 86, 3682–3700 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Dohner, Ok. et al. Serve as of dynein and dynactin in herpes simplex virus capsid shipping. Mol. Biol. Cellular. 13, 2795–2809 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    DuRaine, G., Wisner, T. W., Howard, P. & Johnson, D. C. Kinesin-1 proteins KIF5A, 5B and 5C advertise anterograde shipping of herpes simplex virus enveloped virions in axons. J. Virol. 92, e01269-18 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Radtke, Ok. et al. Plus- and minus-end directed microtubule motors bind concurrently to herpes simplex virus capsids the use of other interior tegument buildings. PLoS Pathog. 6, e1000991 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Diefenbach, R. J. et al. The fundamental area of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. J. Virol. 90, 2102–2111 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Loret, S., Guay, G. & Lippe, R. Complete characterization of extracellular herpes simplex virus form 1 virions. J. Virol. 82, 8605–8618 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Kramer, T., Greco, T. M., Enquist, L. W. & Cristea, I. M. Proteomic characterization of pseudorabies virus extracellular virions. J. Virol. 85, 6427–6441 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Miranda-Saksena, M. et al. Herpes simplex virus makes use of the massive secretory vesicle pathway for anterograde shipping of tegument and envelope proteins and for viral exocytosis from enlargement cones of human fetal axons. J. Virol. 83, 3187–3199 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Smith, C. L. Culturing Nerve Cells 2d Edn (eds Banker, G. & Goslin, Ok.) 261–287 (MIT Press, 1998).

  • 25.

    Smith, G. A., Gross, S. P. & Enquist, L. W. Herpesviruses use bidirectional fast-axonal shipping to unfold in sensory neurons. Proc. Natl Acad. Sci. USA 98, 3466–3470 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Tanaka, M., Kagawa, H., Yamanashi, Y., Sata, T. & Kawaguchi, Y. Building of an excisable bacterial synthetic chromosome containing a full-length infectious clone of herpes simplex virus form 1: viruses reconstituted from the clone show off wild-type homes in vitro and in vivo. J. Virol. 77, 1382–1391 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Smith, G. A. & Enquist, L. W. Building and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J. Virol. 73, 6405–6414 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Kaufman, H. E., Ellison, E. D. & Waltman, S. R. Double-stranded RNA, an interferon inducer, in herpes simplex keratitis. Am. J. Ophthalmol. 68, 486–491 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Bohannon, Ok. P., Sollars, P. J., Pickard, G. E. & Smith, G. A. Fusion of a fluorescent protein to the pUL25 minor capsid protein of pseudorabies virus permits live-cell capsid imaging with negligible have an effect on on an infection. J. Gen. Virol. 93, 124–129 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Huffmaster, N. J., Sollars, P. J., Richards, A. L., Pickard, G. E. & Smith, G. A. Dynamic ubiquitination drives herpesvirus neuroinvasion. Proc. Natl Acad. Sci. USA 112, 12818–12823 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Richards, A. L. et al. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal shipping to advertise neuroinvasion. PLoS Pathog. 13, e1006741 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Stults, A. M. & Smith, G. A. The herpes simplex virus 1 deamidase complements propagation however is dispensable for retrograde axonal shipping into the worried device. J Virol 93, e01172-19 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Tischer, B. Ok., Smith, G. A. & Osterrieder, N. En passant mutagenesis: a two step markerless crimson recombination device. Strategies Mol. Biol. 634, 421–430 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Szpara, M. L. et al. A large extent of inter-strain range in virulent and vaccine lines of alphaherpesviruses. PLoS Pathog. 7, e1002282 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Symbol processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).


    Google Scholar
     

  • 36.

    Luxton, G. W. et al. Focused on of herpesvirus capsid shipping in axons is coupled to affiliation with explicit units of tegument proteins. Proc. Natl Acad. Sci. USA 102, 5832–5837 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Leelawong, M., Lee, J. I. & Smith, G. A. Nuclear egress of pseudorabies virus capsids is enhanced via a subspecies of the massive tegument protein this is misplaced upon cytoplasmic maturation. J. Virol. 86, 6303–6314 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Lee, J. I., Luxton, G. W. & Smith, G. A. Identity of an very important area within the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons. J. Virol. 80, 12086–12094 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Dodding, M. P., Mitter, R., Humphries, A. C. & Manner, M. A kinesin-1 binding motif in vaccinia virus this is common right through the human genome. EMBO J. 30, 4523–4538 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Tombacz, D., Toth, J. S., Petrovszki, P. & Boldogkoi, Z. Complete-genome research of pseudorabies virus gene expression via real-time quantitative RT-PCR assay. BMC Genomics 10, 491 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Lee, G. E., Murray, J. W., Wolkoff, A. W. & Wilson, D. W. Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J. Virol. 80, 4264–4275 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Kharkwal, H., Smith, C. G. & Wilson, D. W. Blockading ESCRT-mediated envelopment inhibits microtubule-dependent trafficking of alphaherpesviruses in vitro. J. Virol. 88, 14467–14478 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Howard, J. & Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors via fluorescence microscopy. Strategies Cellular. Biol. 39, 105–113 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Shanda, S. Ok. & Wilson, D. W. UL36p is needed for environment friendly shipping of membrane-associated herpes simplex virus form 1 alongside microtubules. J. Virol. 82, 7388–7394 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Homa, F. L. et al. Construction of the pseudorabies virus capsid: comparability with herpes simplex virus form 1 and differential binding of very important minor proteins. J. Mol. Biol. 425, 3415–3428 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Huet, A. et al. Intensive subunit contacts underpin herpesvirus capsid balance and interior-to-exterior allostery. Nat. Struct. Mol. Biol. 23, 531–539 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Eng, J. Ok., McCormack, A. L. & Yates, J. R. An technique to correlate tandem mass spectral knowledge of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5, 976–989 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Xu, T. et al. ProLuCID: An progressed SEQUEST-like set of rules with enhanced sensitivity and specificity. J. Proteomics 129, 16–24 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Cociorva, D., D, L. T. & Yates, J. R. Validation of tandem mass spectrometry database seek effects the use of DTASelect. Curr. Protoc. Bioinformatics Ch. 13, Unit 13 14 (2007).


    Google Scholar
     

  • 50.

    Tabb, D. L., McDonald, W. H. & Yates, J. R., third. DTASelect and Distinction: gear for assembling and evaluating protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    UniProt, C. UniProt: a hub for protein data. Nucleic Acids Res. 43, D204–D212 (2015).


    Google Scholar
     

  • 52.

    Elias, J. E. & Gygi, S. P. Goal-decoy seek technique for greater self belief in large-scale protein identifications via mass spectrometry. Nat. Strategies 4, 207–214 (2007).

    CAS 
    PubMed 

    Google Scholar
     


  • #Herpesviruses #assimilate #kinesin #produce #motorized #viral #debris

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *